Epel Boris, Bowman Michael K, Mailer Colin, Halpern Howard J
Center for EPR Imaging In Vivo Physiology, The University of Chicago, Department of Radiation and Cellular Oncology (MC 1105), Chicago, Illinois, USA.
Magn Reson Med. 2014 Aug;72(2):362-8. doi: 10.1002/mrm.24926. Epub 2013 Sep 4.
Tissue oxygen (O2) levels are among the most important and most quantifiable stimuli to which cells and tissues respond through inducible signaling pathways. Tumor O2 levels are major determinants of the response to cancer therapy. Developing more accurate measurements and images of tissue O2 partial pressure (pO2), assumes enormous practical, biological, and medical importance.
We present a fundamentally new technique to image pO2 in tumors and tissues with pulse electron paramagnetic resonance (EPR) imaging enabled by an injected, nontoxic, triaryl methyl (trityl) spin probe whose unpaired electron's slow relaxation rates report the tissue pO2. Heretofore, virtually all in vivo EPR O2 imaging measures pO2 with the transverse electron spin relaxation rate, R2e, which is susceptible to the self-relaxation confounding O2 sensitivity.
We found that the trityl electron longitudinal relaxation rate, R1e, is an order of magnitude less sensitive to confounding self-relaxation. R1e imaging has greater accuracy and brings EPR O2 images to an absolute pO2 image, within uncertainties.
R1e imaging more accurately determines oxygenation of cancer and normal tissue in animal models than has been available. It will enable enhanced, rapid, noninvasive O2 images for understanding oxygen biology and the relationship of oxygenation patterns to therapy outcome in living animal systems.
组织氧(O₂)水平是细胞和组织通过诱导信号通路做出反应的最重要且最可量化的刺激因素之一。肿瘤氧水平是癌症治疗反应的主要决定因素。开发更准确的组织氧分压(pO₂)测量方法和图像具有巨大的实际、生物学和医学意义。
我们提出了一种全新的技术,通过脉冲电子顺磁共振(EPR)成像来对肿瘤和组织中的pO₂进行成像,该成像由注射无毒的三芳基甲基(三苯甲基)自旋探针实现,其未配对电子的缓慢弛豫速率反映组织的pO₂。在此之前,几乎所有的体内EPR氧成像都是用横向电子自旋弛豫速率R₂e来测量pO₂,而R₂e易受混淆氧敏感性的自弛豫影响。
我们发现三苯甲基电子纵向弛豫速率R₁e对混淆自弛豫的敏感性低一个数量级。R₁e成像具有更高的准确性,并在一定误差范围内将EPR氧图像转化为绝对pO₂图像。
与现有方法相比,R₁e成像能更准确地测定动物模型中癌症组织和正常组织的氧合情况。它将能够生成增强的、快速的、非侵入性的氧图像,用于理解活体动物系统中的氧生物学以及氧合模式与治疗结果的关系。