Huang Ruimei, Du Shouhong, Chen Ziyi, Zhang Zhen, Zhou Yi
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2014 Feb;31(1):18-22.
Electroencephalogram (EEG) is the primary tool in investigation of the brain science. It is necessary to carry out a deepgoing study into the characteristics and information hidden in EEGs to meet the needs of the clinical research. In this paper, we present a wavelet-nonlinear dynamic methodology for analysis of nonlinear characteristic of EEGs and delta, theta, alpha, and beta sub-bands. We therefore studied the effectiveness of correlation dimension (CD), largest Lyapunov exponen, and approximate entropy (ApEn) in differentiation between the interictal EEG and ictal EEG based on statistical significance of the differences. The results showed that the nonlinear dynamic char acteristic of EEG and EEG subbands could be used as effective identification statistics in detecting seizures.
脑电图(EEG)是脑科学研究的主要工具。为满足临床研究的需求,有必要深入研究脑电图中隐藏的特征和信息。本文提出了一种小波非线性动力学方法,用于分析脑电图及其δ、θ、α和β子带的非线性特征。因此,我们基于差异的统计显著性,研究了关联维数(CD)、最大Lyapunov指数和近似熵(ApEn)在区分发作间期脑电图和发作期脑电图方面的有效性。结果表明,脑电图及其子带的非线性动力学特征可作为检测癫痫发作的有效识别统计量。