Suppr超能文献

[癫痫脑电图及脑电图子带的非线性动态特征指标研究]

[Study on nonlinear dynamic characteristic indexes of epileptic electroencephalography and electroencephalography subbands].

作者信息

Huang Ruimei, Du Shouhong, Chen Ziyi, Zhang Zhen, Zhou Yi

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2014 Feb;31(1):18-22.

Abstract

Electroencephalogram (EEG) is the primary tool in investigation of the brain science. It is necessary to carry out a deepgoing study into the characteristics and information hidden in EEGs to meet the needs of the clinical research. In this paper, we present a wavelet-nonlinear dynamic methodology for analysis of nonlinear characteristic of EEGs and delta, theta, alpha, and beta sub-bands. We therefore studied the effectiveness of correlation dimension (CD), largest Lyapunov exponen, and approximate entropy (ApEn) in differentiation between the interictal EEG and ictal EEG based on statistical significance of the differences. The results showed that the nonlinear dynamic char acteristic of EEG and EEG subbands could be used as effective identification statistics in detecting seizures.

摘要

脑电图(EEG)是脑科学研究的主要工具。为满足临床研究的需求,有必要深入研究脑电图中隐藏的特征和信息。本文提出了一种小波非线性动力学方法,用于分析脑电图及其δ、θ、α和β子带的非线性特征。因此,我们基于差异的统计显著性,研究了关联维数(CD)、最大Lyapunov指数和近似熵(ApEn)在区分发作间期脑电图和发作期脑电图方面的有效性。结果表明,脑电图及其子带的非线性动力学特征可作为检测癫痫发作的有效识别统计量。

相似文献

8
Comparison of ictal and interictal EEG signals using fractal features.使用分形特征比较发作期和发作间期的 EEG 信号。
Int J Neural Syst. 2013 Dec;23(6):1350028. doi: 10.1142/S0129065713500287. Epub 2013 Sep 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验