1] Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125, USA [2] Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA [3].
1] Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125, USA [2] Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA.
Nat Commun. 2014 May 8;5:3808. doi: 10.1038/ncomms4808.
The integration of nanophotonics and atomic physics has been a long-sought goal that would open new frontiers for optical physics, including novel quantum transport and many-body phenomena with photon-mediated atomic interactions. Reaching this goal requires surmounting diverse challenges in nanofabrication and atomic manipulation. Here we report the development of a novel integrated optical circuit with a photonic crystal capable of both localizing and interfacing atoms with guided photons. Optical bands of a photonic crystal waveguide are aligned with selected atomic transitions. From reflection spectra measured with average atom number N=1.1+/-0.4, we infer that atoms are localized within the waveguide by optical dipole forces. The fraction of single-atom radiative decay into the waveguide is Γ1D/Γ'≃(0.32±0.08), where Γ1D is the rate of emission into the guided mode and Γ' is the decay rate into all other channels. Γ1D/Γ' is unprecedented in all current atom-photon interfaces.
纳米光子学和原子物理学的融合一直是人们梦寐以求的目标,它将为光学物理学开辟新的前沿领域,包括新型的量子输运和具有光子介导的原子相互作用的多体现象。实现这一目标需要克服在纳米制造和原子操控方面的各种挑战。在这里,我们报告了一种新型集成光学电路的发展,该电路具有光子晶体,能够将原子与导波光子局部化和接口化。光子晶体波导的光学带与选定的原子跃迁相匹配。从平均原子数 N=1.1+/-0.4 测量的反射光谱中,我们推断原子被光偶极力局域在波导中。单原子辐射衰减到波导中的分数为 Γ1D/Γ'≃(0.32±0.08),其中 Γ1D 是发射到导模的速率,Γ'是衰减到所有其他通道的速率。在所有当前的原子-光子接口中,Γ1D/Γ'是前所未有的。