Suppr超能文献

多体光学双稳性中的瞬态平衡

Emergent equilibrium in many-body optical bistability.

作者信息

Foss-Feig M, Niroula P, Young J T, Hafezi M, Gorshkov A V, Wilson R M, Maghrebi M F

机构信息

United States Army Research Laboratory, Adelphi, Maryland 20783, USA.

Joint Quantum Institute, NIST and University of Maryland, College Park, Maryland 20742, USA.

出版信息

Phys Rev A (Coll Park). 2017;95. doi: 10.1103/PhysRevA.95.043826.

Abstract

Many-body systems constructed of quantum-optical building blocks can now be realized in experimental platforms ranging from exciton-polariton fluids to ultracold Rydberg gases, establishing a fascinating interface between traditional many-body physics and the driven-dissipative, nonequilibrium setting of cavity QED. At this interface, the standard techniques and intuitions of both fields are called into question, obscuring issues as fundamental as the role of fluctuations, dimensionality, and symmetry on the nature of collective behavior and phase transitions. Here, we study the driven-dissipative Bose-Hubbard model, a minimal description of numerous atomic, optical, and solid-state systems in which particle loss is countered by coherent driving. Despite being a lattice version of optical bistability, a foundational and patently model of cavity QED, the steady state possesses an emergent description in terms of a classical Ising model. We establish this picture by making new connections between traditional techniques from many-body physics (functional integrals) and quantum optics (the system-size expansion). To lowest order in a controlled expansion-organized around the experimentally relevant limit of weak interactions-the full quantum dynamics reduces to nonequilibrium Langevin equations, which support a phase transition described by model A of the Hohenberg-Halperin classification. Numerical simulations of the Langevin equations corroborate this picture, revealing that canonical behavior associated with the Ising model manifests readily in simple experimental observables.

摘要

由量子光学构建模块构成的多体系统如今能够在从激子极化子流体到超冷里德堡气体等一系列实验平台中实现,这在传统多体物理与腔量子电动力学的驱动耗散、非平衡环境之间建立了一个引人入胜的界面。在这个界面处,两个领域的标准技术和直觉都受到了质疑,使得诸如涨落、维度和对称性对集体行为和相变性质的作用等基本问题变得模糊不清。在此,我们研究驱动耗散的玻色 - 哈伯德模型,它是众多原子、光学和固态系统的一种最简描述,其中粒子损失通过相干驱动来抵消。尽管它是腔量子电动力学的一个基础且明显的光学双稳性格子版本,但其稳态具有一种基于经典伊辛模型的涌现描述。我们通过在多体物理(泛函积分)和量子光学(系统尺寸展开)的传统技术之间建立新的联系来确立这一图景。在围绕弱相互作用的实验相关极限进行的可控展开中,至最低阶时,完整的量子动力学简化为非平衡朗之万方程,该方程支持由霍恩伯格 - 哈珀林分类中的A模型描述的相变。朗之万方程的数值模拟证实了这一图景,揭示出与伊辛模型相关的典型行为在简单的实验可观测量中很容易显现出来。

相似文献

1
Emergent equilibrium in many-body optical bistability.
Phys Rev A (Coll Park). 2017;95. doi: 10.1103/PhysRevA.95.043826.
2
Solvable Family of Driven-Dissipative Many-Body Systems.
Phys Rev Lett. 2017 Nov 10;119(19):190402. doi: 10.1103/PhysRevLett.119.190402. Epub 2017 Nov 6.
3
Real-time observation of fluctuations at the driven-dissipative Dicke phase transition.
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11763-7. doi: 10.1073/pnas.1306993110. Epub 2013 Jul 1.
4
Emergent Kardar-Parisi-Zhang Phase in Quadratically Driven Condensates.
Phys Rev Lett. 2022 Feb 18;128(7):070401. doi: 10.1103/PhysRevLett.128.070401.
5
Ergodicity breaking from Rydberg clusters in a driven-dissipative many-body system.
Sci Adv. 2024 Mar;10(9):eadl5893. doi: 10.1126/sciadv.adl5893. Epub 2024 Mar 1.
6
Nonequilibrium Fixed Points of Coupled Ising Models.
Phys Rev X. 2020;10(1). doi: 10.1103/physrevx.10.011039.
7
Exact Solution of the Infinite-Range Dissipative Transverse-Field Ising Model.
Phys Rev Lett. 2023 Nov 10;131(19):190403. doi: 10.1103/PhysRevLett.131.190403.
8
PT-symmetric, non-Hermitian quantum many-body physics-a methodological perspective.
Rep Prog Phys. 2023 Nov 16;86(12). doi: 10.1088/1361-6633/ad05f3.
9
Variational principle for steady states of dissipative quantum many-body systems.
Phys Rev Lett. 2015 Jan 30;114(4):040402. doi: 10.1103/PhysRevLett.114.040402.
10
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.

引用本文的文献

1
Optical control of levitated nanoparticles via dipole-dipole interaction.
Nanophotonics. 2025 Mar 24;14(7):873-884. doi: 10.1515/nanoph-2024-0287. eCollection 2025 Apr.
2
3
Nature of the nonequilibrium phase transition in the non-Markovian driven Dicke model.
Phys Rev A (Coll Park). 2020 Sep;102(3). doi: 10.1103/PhysRevA.102.032218.
4
Nonequilibrium Fixed Points of Coupled Ising Models.
Phys Rev X. 2020;10(1). doi: 10.1103/physrevx.10.011039.
5
Dissipation-induced bistability in the two-photon Dicke model.
Sci Rep. 2020 Aug 7;10(1):13408. doi: 10.1038/s41598-020-69704-6.

本文引用的文献

1
Collective phases of strongly interacting cavity photons.
Phys Rev A (Coll Park). 2016;94. doi: 10.1103/PhysRevA.94.033801.
2
Nonequilibrium many-body steady states via Keldysh formalism.
Phys Rev B. 2016;93. doi: 10.1103/PhysRevB.93.014307.
3
Multicritical behavior in dissipative Ising models.
Phys Rev A (Coll Park). 2017;95. doi: 10.1103/PhysRevA.95.042133.
4
Probing a Dissipative Phase Transition via Dynamical Optical Hysteresis.
Phys Rev Lett. 2017 Jun 16;118(24):247402. doi: 10.1103/PhysRevLett.118.247402.
5
Metastability in an open quantum Ising model.
Phys Rev E. 2016 Nov;94(5-1):052132. doi: 10.1103/PhysRevE.94.052132. Epub 2016 Nov 18.
6
Quantum simulations and many-body physics with light.
Rep Prog Phys. 2017 Jan;80(1):016401. doi: 10.1088/0034-4885/80/1/016401. Epub 2016 Nov 4.
7
Keldysh field theory for driven open quantum systems.
Rep Prog Phys. 2016 Sep;79(9):096001. doi: 10.1088/0034-4885/79/9/096001. Epub 2016 Aug 2.
8
Absorbing State Phase Transition with Competing Quantum and Classical Fluctuations.
Phys Rev Lett. 2016 Jun 17;116(24):245701. doi: 10.1103/PhysRevLett.116.245701.
9
Towards a Theory of Metastability in Open Quantum Dynamics.
Phys Rev Lett. 2016 Jun 17;116(24):240404. doi: 10.1103/PhysRevLett.116.240404. Epub 2016 Jun 16.
10
Interaction-induced hopping phase in driven-dissipative coupled photonic microcavities.
Nat Commun. 2016 Jun 16;7:11887. doi: 10.1038/ncomms11887.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验