Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark.
Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology, Seoul 136-791, Korea.
Phys Rev Lett. 2014 Aug 29;113(9):093603. doi: 10.1103/PhysRevLett.113.093603.
A quantum emitter efficiently coupled to a nanophotonic waveguide constitutes a promising system for the realization of single-photon transistors, quantum-logic gates based on giant single-photon nonlinearities, and high bit-rate deterministic single-photon sources. The key figure of merit for such devices is the β factor, which is the probability for an emitted single photon to be channeled into a desired waveguide mode. We report on the experimental achievement of β=98.43%±0.04% for a quantum dot coupled to a photonic crystal waveguide, corresponding to a single-emitter cooperativity of η=62.7±1.5. This constitutes a nearly ideal photon-matter interface where the quantum dot acts effectively as a 1D "artificial" atom, since it interacts almost exclusively with just a single propagating optical mode. The β factor is found to be remarkably robust to variations in position and emission wavelength of the quantum dots. Our work demonstrates the extraordinary potential of photonic crystal waveguides for highly efficient single-photon generation and on-chip photon-photon interaction.
高效耦合到纳米光子波导的量子发射器是实现单光子晶体管、基于巨单光子非线性的量子逻辑门和高比特率确定性单光子源的有前途的系统。这种器件的关键衡量标准是β因子,它是发射的单光子被引导到所需波导模式的概率。我们报告了实验上实现的量子点与光子晶体波导耦合的β=98.43%±0.04%,对应于单个发射器的协同作用η=62.7±1.5。这构成了一个近乎理想的光子-物质界面,其中量子点有效地充当一维“人工”原子,因为它几乎只与单个传播的光模式相互作用。发现β因子对量子点的位置和发射波长的变化具有显著的稳健性。我们的工作证明了光子晶体波导在高效单光子产生和片上光子-光子相互作用方面具有非凡的潜力。