Campos Daniela C, Acevedo Francisca, Morales Eduardo, Aravena Javiera, Amiard Véronique, Jorquera Milko A, Inostroza Nitza G, Rubilar Mónica
Technology and Processes Unit, Agri-aquaculture Nutritional Genomic Center, CGNA, 4791057, Temuco, Chile.
World J Microbiol Biotechnol. 2014 Sep;30(9):2371-8. doi: 10.1007/s11274-014-1662-8. Epub 2014 May 8.
Plant growth promoting bacteria and nitrogen-fixing bacteria (NFB) used for crop inoculation have important biotechnological potential as a sustainable fertilization tool. However, the main limitation of this technology is the low inoculum survival rate under field conditions. Microencapsulation of bacterial cells in polymer matrices provides a controlled release and greater protection against environmental conditions. In this context, the aim of this study was to isolate and characterize putative NFB associated with lupin nodules and to evaluate their microencapsulation by spray drying. For this purpose, 21 putative NFB were isolated from lupin nodules and characterized (16S rRNA genes). Microencapsulation of bacterial cells by spray drying was studied using a mixture of sodium alginate:maltodextrin at different ratios (0:15, 1:14, 2:13) and concentrations (15 and 30% solids) as the wall material. The microcapsules were observed under scanning electron microscopy to verify their suitable morphology. Results showed the association between lupin nodules of diverse known NFB and nodule-forming bacteria belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Bacteroidetes. In microencapsulation assays, the 1:14 ratio of sodium alginate:maltodextrin (15% solids) showed the highest cell survival rate (79%), with a microcapsule yield of 27% and spherical microcapsules of 5-50 µm in diameter. In conclusion, diverse putative NFB genera and nodule-forming bacteria are associated with the nodules of lupine plants grown in soils in southern Chile, and their microencapsulation by spray drying using sodium alginate:maltodextrin represents a scalable process to generate a biofertilizer as an alternative to traditional nitrogen fertilization.
用于作物接种的植物促生细菌和固氮细菌作为一种可持续施肥工具具有重要的生物技术潜力。然而,该技术的主要局限性在于田间条件下接种体的存活率较低。将细菌细胞微囊化于聚合物基质中可实现控释,并能更好地抵御环境条件影响。在此背景下,本研究旨在分离和鉴定与羽扇豆根瘤相关的假定固氮细菌,并评估通过喷雾干燥对其进行微囊化的效果。为此,从羽扇豆根瘤中分离出21株假定固氮细菌并进行了鉴定(16S rRNA基因)。使用不同比例(0:15、1:14、2:13)和浓度(15%和30%固含量)的海藻酸钠:麦芽糊精混合物作为壁材,研究了通过喷雾干燥对细菌细胞进行微囊化的情况。在扫描电子显微镜下观察微胶囊以验证其合适的形态。结果表明,不同的已知固氮细菌与羽扇豆根瘤之间存在关联,且根瘤形成细菌属于α-变形菌纲、β-变形菌纲、γ-变形菌纲和拟杆菌门。在微囊化试验中,海藻酸钠:麦芽糊精比例为1:14(固含量15%)时显示出最高的细胞存活率(79%),微胶囊产率为27%,直径为5 - 50 µm的球形微胶囊。总之,多种假定固氮细菌属和根瘤形成细菌与智利南部土壤中生长的羽扇豆植物根瘤相关,并且使用海藻酸钠:麦芽糊精通过喷雾干燥对其进行微囊化代表了一种可扩展的工艺,可用于生产生物肥料以替代传统氮肥。