IEEE Trans Neural Netw Learn Syst. 2012 Jul;23(7):1100-17. doi: 10.1109/TNNLS.2012.2198227.
We propose a new classifier combination method, the signal strength-based combining (SSC) approach, to combine the outputs of multiple classifiers to support the decision-making process in classification tasks. As ensemble learning methods have attracted growing attention from both academia and industry recently, it is critical to understand the fundamental issues of the combining rule. Motivated by the signal strength concept, our proposed SSC algorithm can effectively integrate the individual vote from different classifiers in an ensemble learning system. Comparative studies of our method with nine major existing combining rules, namely, geometric average rule, arithmetic average rule, median value rule, majority voting rule, Borda count, max and min rule, weighted average, and weighted majority voting rules, is presented. Furthermore, we also discuss the relationship of the proposed method with respect to margin-based classifiers, including the boosting method (AdaBoost.M1 and AdaBoost.M2) and support vector machines by margin analysis. Detailed analyses of margin distribution graphs are presented to discuss the characteristics of the proposed method. Simulation results for various real-world datasets illustrate the effectiveness of the proposed method.
我们提出了一种新的分类器组合方法,即基于信号强度的组合(SSC)方法,以组合多个分类器的输出,支持分类任务中的决策过程。由于最近组合学习方法受到学术界和工业界越来越多的关注,因此了解组合规则的基本问题至关重要。受信号强度概念的启发,我们提出的 SSC 算法可以有效地整合集合学习系统中不同分类器的个体投票。与九个主要的现有组合规则(即几何平均值规则、算术平均值规则、中位数规则、多数投票规则、Borda 计数、最大和最小规则、加权平均值和加权多数投票规则)进行了比较研究。此外,我们还讨论了所提出的方法与基于边界的分类器的关系,包括通过边界分析的提升方法(AdaBoost.M1 和 AdaBoost.M2)和支持向量机。通过详细分析边界分布图来讨论该方法的特点。对各种真实数据集的仿真结果说明了所提出方法的有效性。