Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA.
Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, USA.
J Virol. 2014 Jul;88(14):7973-86. doi: 10.1128/JVI.00376-14. Epub 2014 May 7.
The varicella-zoster virus (VZV) open reading frame 54 (ORF54) gene encodes an 87-kDa monomer that oligomerizes to form the VZV portal protein, pORF54. pORF54 was hypothesized to perform a function similar to that of a previously described herpes simplex virus 1 (HSV-1) homolog, pUL6. pUL6 and the associated viral terminase are required for processing of concatemeric viral DNA and packaging of individual viral genomes into preformed capsids. In this report, we describe two VZV bacterial artificial chromosome (BAC) constructs with ORF54 gene deletions, Δ54L (full ORF deletion) and Δ54S (partial internal deletion). The full deletion of ORF54 likely disrupted essential adjacent genes (ORF53 and ORF55) and therefore could not be complemented on an ORF54-expressing cell line (ARPE54). In contrast, Δ54S was successfully propagated in ARPE54 cells but failed to replicate in parental, noncomplementing ARPE19 cells. Transmission electron microscopy confirmed the presence of only empty VZV capsids in Δ54S-infected ARPE19 cell nuclei. Similar to the HSV-1 genome, the VZV genome is composed of a unique long region (UL) and a unique short region (US) flanked by inverted repeats. DNA from cells infected with parental VZV (VZVLUC strain) contained the predicted UL and US termini, whereas cells infected with Δ54S contained neither. This result demonstrates that Δ54S is not able to process and package viral DNA, thus making pORF54 an excellent chemotherapeutic target. In addition, the utility of BAC constructs Δ54L and Δ54S as tools for the isolation of site-directed ORF54 mutants was demonstrated by recombineering single-nucleotide changes within ORF54 that conferred resistance to VZV-specific portal protein inhibitors. Importance: Antivirals with novel mechanisms of action would provide additional therapeutic options to treat human herpesvirus infections. Proteins involved in the herpesviral DNA encapsidation process have become promising antiviral targets. Previously, we described a series of N-α-methylbenzyl-N'-aryl thiourea analogs that target the VZV portal protein (pORF54) and prevent viral replication in vitro. To better understand the mechanism of action of these compounds, it is important to define the structural and functional characteristics of the VZV portal protein. In contrast to HSV, no VZV mutants have been described for any of the seven essential DNA encapsidation genes. The VZV ORF54 deletion mutant described in this study represents the first VZV encapsidation mutant reported to date. We demonstrate that the deletion mutant can serve as a platform for the isolation of portal mutants via recombineering and provide a strategy for more in-depth studies of VZV portal structure and function.
水痘带状疱疹病毒(VZV)开放阅读框 54(ORF54)基因编码一个 87kDa 的单体,该单体寡聚形成 VZV 门户蛋白,pORF54。假设 pORF54 执行与先前描述的单纯疱疹病毒 1(HSV-1)同源物 pUL6 类似的功能。pUL6 和相关的病毒端酶对于拼接的病毒 DNA 的加工和单个病毒基因组包装到预形成的衣壳中是必需的。在本报告中,我们描述了两个具有 ORF54 基因缺失的 VZV 细菌人工染色体(BAC)构建体,Δ54L(全长 ORF 缺失)和 Δ54S(部分内部缺失)。ORF54 的完全缺失可能破坏了必需的相邻基因(ORF53 和 ORF55),因此不能在表达 ORF54 的细胞系(ARPE54)上互补。相比之下,Δ54S 在 ARPE54 细胞中成功繁殖,但在亲本、非互补的 ARPE19 细胞中无法复制。透射电子显微镜证实,Δ54S 感染的 ARPE19 细胞核中只有空的 VZV 衣壳。与 HSV-1 基因组一样,VZV 基因组由独特的长区域(UL)和短区域(US)组成,两侧是反向重复序列。用亲本 VZV(VZVLUC 株)感染的细胞中的 DNA 包含预期的 UL 和 US 末端,而用 Δ54S 感染的细胞中则没有。这一结果表明,Δ54S 不能加工和包装病毒 DNA,因此使 pORF54 成为一个很好的化学治疗靶点。此外,BAC 构建体 Δ54L 和 Δ54S 作为分离定点 ORF54 突变体的工具的用途通过重组酶在 ORF54 内引入单核苷酸变化来证明,该变化赋予对 VZV 特异性门户蛋白抑制剂的抗性。重要性:具有新作用机制的抗病毒药物将为治疗人类疱疹病毒感染提供更多的治疗选择。参与疱疹病毒 DNA 包裹过程的蛋白质已成为有前途的抗病毒靶标。以前,我们描述了一系列 N-α-甲基苄基-N'-芳基硫脲类似物,这些类似物靶向 VZV 门户蛋白(pORF54)并在体外阻止病毒复制。为了更好地了解这些化合物的作用机制,定义 VZV 门户蛋白的结构和功能特征非常重要。与 HSV 不同,七个必需的 DNA 包裹基因中没有任何 VZV 突变体被描述过。本研究中描述的 VZV ORF54 缺失突变体代表了迄今为止报道的第一个 VZV 包裹突变体。我们证明,缺失突变体可作为通过重组酶分离门户突变体的平台,并提供了一种更深入研究 VZV 门户结构和功能的策略。