Suppr超能文献

水痘带状疱疹病毒门户蛋白是病毒 DNA 切割和包装所必需的。

The varicella-zoster virus portal protein is essential for cleavage and packaging of viral DNA.

机构信息

Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA.

Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, USA.

出版信息

J Virol. 2014 Jul;88(14):7973-86. doi: 10.1128/JVI.00376-14. Epub 2014 May 7.

Abstract

The varicella-zoster virus (VZV) open reading frame 54 (ORF54) gene encodes an 87-kDa monomer that oligomerizes to form the VZV portal protein, pORF54. pORF54 was hypothesized to perform a function similar to that of a previously described herpes simplex virus 1 (HSV-1) homolog, pUL6. pUL6 and the associated viral terminase are required for processing of concatemeric viral DNA and packaging of individual viral genomes into preformed capsids. In this report, we describe two VZV bacterial artificial chromosome (BAC) constructs with ORF54 gene deletions, Δ54L (full ORF deletion) and Δ54S (partial internal deletion). The full deletion of ORF54 likely disrupted essential adjacent genes (ORF53 and ORF55) and therefore could not be complemented on an ORF54-expressing cell line (ARPE54). In contrast, Δ54S was successfully propagated in ARPE54 cells but failed to replicate in parental, noncomplementing ARPE19 cells. Transmission electron microscopy confirmed the presence of only empty VZV capsids in Δ54S-infected ARPE19 cell nuclei. Similar to the HSV-1 genome, the VZV genome is composed of a unique long region (UL) and a unique short region (US) flanked by inverted repeats. DNA from cells infected with parental VZV (VZVLUC strain) contained the predicted UL and US termini, whereas cells infected with Δ54S contained neither. This result demonstrates that Δ54S is not able to process and package viral DNA, thus making pORF54 an excellent chemotherapeutic target. In addition, the utility of BAC constructs Δ54L and Δ54S as tools for the isolation of site-directed ORF54 mutants was demonstrated by recombineering single-nucleotide changes within ORF54 that conferred resistance to VZV-specific portal protein inhibitors. Importance: Antivirals with novel mechanisms of action would provide additional therapeutic options to treat human herpesvirus infections. Proteins involved in the herpesviral DNA encapsidation process have become promising antiviral targets. Previously, we described a series of N-α-methylbenzyl-N'-aryl thiourea analogs that target the VZV portal protein (pORF54) and prevent viral replication in vitro. To better understand the mechanism of action of these compounds, it is important to define the structural and functional characteristics of the VZV portal protein. In contrast to HSV, no VZV mutants have been described for any of the seven essential DNA encapsidation genes. The VZV ORF54 deletion mutant described in this study represents the first VZV encapsidation mutant reported to date. We demonstrate that the deletion mutant can serve as a platform for the isolation of portal mutants via recombineering and provide a strategy for more in-depth studies of VZV portal structure and function.

摘要

水痘带状疱疹病毒(VZV)开放阅读框 54(ORF54)基因编码一个 87kDa 的单体,该单体寡聚形成 VZV 门户蛋白,pORF54。假设 pORF54 执行与先前描述的单纯疱疹病毒 1(HSV-1)同源物 pUL6 类似的功能。pUL6 和相关的病毒端酶对于拼接的病毒 DNA 的加工和单个病毒基因组包装到预形成的衣壳中是必需的。在本报告中,我们描述了两个具有 ORF54 基因缺失的 VZV 细菌人工染色体(BAC)构建体,Δ54L(全长 ORF 缺失)和 Δ54S(部分内部缺失)。ORF54 的完全缺失可能破坏了必需的相邻基因(ORF53 和 ORF55),因此不能在表达 ORF54 的细胞系(ARPE54)上互补。相比之下,Δ54S 在 ARPE54 细胞中成功繁殖,但在亲本、非互补的 ARPE19 细胞中无法复制。透射电子显微镜证实,Δ54S 感染的 ARPE19 细胞核中只有空的 VZV 衣壳。与 HSV-1 基因组一样,VZV 基因组由独特的长区域(UL)和短区域(US)组成,两侧是反向重复序列。用亲本 VZV(VZVLUC 株)感染的细胞中的 DNA 包含预期的 UL 和 US 末端,而用 Δ54S 感染的细胞中则没有。这一结果表明,Δ54S 不能加工和包装病毒 DNA,因此使 pORF54 成为一个很好的化学治疗靶点。此外,BAC 构建体 Δ54L 和 Δ54S 作为分离定点 ORF54 突变体的工具的用途通过重组酶在 ORF54 内引入单核苷酸变化来证明,该变化赋予对 VZV 特异性门户蛋白抑制剂的抗性。重要性:具有新作用机制的抗病毒药物将为治疗人类疱疹病毒感染提供更多的治疗选择。参与疱疹病毒 DNA 包裹过程的蛋白质已成为有前途的抗病毒靶标。以前,我们描述了一系列 N-α-甲基苄基-N'-芳基硫脲类似物,这些类似物靶向 VZV 门户蛋白(pORF54)并在体外阻止病毒复制。为了更好地了解这些化合物的作用机制,定义 VZV 门户蛋白的结构和功能特征非常重要。与 HSV 不同,七个必需的 DNA 包裹基因中没有任何 VZV 突变体被描述过。本研究中描述的 VZV ORF54 缺失突变体代表了迄今为止报道的第一个 VZV 包裹突变体。我们证明,缺失突变体可作为通过重组酶分离门户突变体的平台,并提供了一种更深入研究 VZV 门户结构和功能的策略。

相似文献

1
The varicella-zoster virus portal protein is essential for cleavage and packaging of viral DNA.
J Virol. 2014 Jul;88(14):7973-86. doi: 10.1128/JVI.00376-14. Epub 2014 May 7.
3
Mutagenesis and functional analysis of the varicella-zoster virus portal protein.
J Virol. 2024 Apr 16;98(4):e0060323. doi: 10.1128/jvi.00603-23. Epub 2024 Mar 22.
4
Role of the Herpes Simplex Virus CVSC Proteins at the Capsid Portal Vertex.
J Virol. 2020 Nov 23;94(24). doi: 10.1128/JVI.01534-20.
6
Identification of small molecule compounds that selectively inhibit varicella-zoster virus replication.
J Virol. 2003 Feb;77(4):2349-58. doi: 10.1128/jvi.77.4.2349-2358.2003.
7
The Varicella-zoster virus ORF54 gene product encodes the capsid portal protein, pORF54.
Virus Res. 2012 Jul;167(1):102-5. doi: 10.1016/j.virusres.2012.03.013. Epub 2012 Mar 28.
8
ORF7 of Varicella-Zoster Virus Is Required for Viral Cytoplasmic Envelopment in Differentiated Neuronal Cells.
J Virol. 2017 May 26;91(12). doi: 10.1128/JVI.00127-17. Print 2017 Jun 15.

引用本文的文献

1
Mutagenesis and functional analysis of the varicella-zoster virus portal protein.
J Virol. 2024 Apr 16;98(4):e0060323. doi: 10.1128/jvi.00603-23. Epub 2024 Mar 22.
2
Congenital and Perinatal Varicella Infections.
Newborn (Clarksville). 2022 Jul-Sep;1(3):278-286. doi: 10.5005/jp-journals-11002-0040. Epub 2022 Oct 7.
3
A Guide to Preclinical Models of Zoster-Associated Pain and Postherpetic Neuralgia.
Curr Top Microbiol Immunol. 2023;438:189-221. doi: 10.1007/82_2021_240.
5
Cryo-EM structure of the varicella-zoster virus A-capsid.
Nat Commun. 2020 Sep 22;11(1):4795. doi: 10.1038/s41467-020-18537-y.
6
DNA Encapsidation and Capsid Assembly Are Underexploited Antiviral Targets for the Treatment of Herpesviruses.
Front Microbiol. 2020 Aug 12;11:1862. doi: 10.3389/fmicb.2020.01862. eCollection 2020.
7
Effects of Shield1 on the viral replication of varicella‑zoster virus containing FKBP‑tagged ORF4 and 48.
Mol Med Rep. 2018 Jan;17(1):763-770. doi: 10.3892/mmr.2017.7986. Epub 2017 Nov 6.
8
Herpes zoster and the search for an effective vaccine.
Clin Exp Immunol. 2017 Jan;187(1):82-92. doi: 10.1111/cei.12809. Epub 2016 Jul 25.

本文引用的文献

1
2
Herpes zoster caused by vaccine-strain varicella zoster virus in an immunocompetent recipient of zoster vaccine.
Clin Infect Dis. 2014 Apr;58(8):1125-8. doi: 10.1093/cid/ciu058. Epub 2014 Jan 26.
3
Varicella zoster: an update on current treatment options and future perspectives.
Expert Opin Pharmacother. 2014 Jan;15(1):61-71. doi: 10.1517/14656566.2014.860443. Epub 2013 Nov 30.
4
Structure-function analysis of the DNA translocating portal of the bacteriophage T4 packaging machine.
J Mol Biol. 2014 Mar 6;426(5):1019-38. doi: 10.1016/j.jmb.2013.10.011. Epub 2013 Oct 11.
5
Pathogenesis and current approaches to control of varicella-zoster virus infections.
Clin Microbiol Rev. 2013 Oct;26(4):728-43. doi: 10.1128/CMR.00052-13.
6
Zostavax : a subcutaneous vaccine for the prevention of herpes zoster.
Expert Opin Biol Ther. 2013 Oct;13(10):1467-77. doi: 10.1517/14712598.2013.830101. Epub 2013 Aug 29.
7
Fatal varicella due to the vaccine-strain varicella-zoster virus.
Hum Vaccin Immunother. 2014;10(1):146-9. doi: 10.4161/hv.26200. Epub 2013 Aug 27.
8
Advances in the treatment of varicella-zoster virus infections.
Adv Pharmacol. 2013;67:107-68. doi: 10.1016/B978-0-12-405880-4.00004-4.
9
Aberrant virion assembly and limited glycoprotein C production in varicella-zoster virus-infected neurons.
J Virol. 2013 Sep;87(17):9643-8. doi: 10.1128/JVI.01506-13. Epub 2013 Jun 26.
10
Progress in VZV vaccination? Some concerns.
Med Microbiol Immunol. 2013 Aug;202(4):257-8. doi: 10.1007/s00430-013-0298-x. Epub 2013 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验