Suppr超能文献

Learning With Coefficient-Based Regularized Regression on Markov Resampling.

作者信息

Li Luoqing, Li Weifu, Zou Bin, Wang Yulong, Tang Yuan Yan, Han Hua

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Sep;29(9):4166-4176. doi: 10.1109/TNNLS.2017.2757140. Epub 2017 Oct 25.

Abstract

Big data research has become a globally hot topic in recent years. One of the core problems in big data learning is how to extract effective information from the huge data. In this paper, we propose a Markov resampling algorithm to draw useful samples for handling coefficient-based regularized regression (CBRR) problem. The proposed Markov resampling algorithm is a selective sampling method, which can automatically select uniformly ergodic Markov chain (u.e.M.c.) samples according to transition probabilities. Based on u.e.M.c. samples, we analyze the theoretical performance of CBRR algorithm and generalize the existing results on independent and identically distributed observations. To be specific, when the kernel is infinitely differentiable, the learning rate depending on the sample size $m$ can be arbitrarily close to $\mathcal {O}(m^{-1})$ under a mild regularity condition on the regression function. The good generalization ability of the proposed method is validated by experiments on simulated and real data sets.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验