Suppr超能文献

基于核平滑模型和低差异抽样的学习。

Learning with kernel smoothing models and low-discrepancy sampling.

出版信息

IEEE Trans Neural Netw Learn Syst. 2013 Mar;24(3):504-9. doi: 10.1109/TNNLS.2012.2236353.

Abstract

This brief presents an analysis of the performance of kernel smoothing models used to estimate an unknown target function, addressing the case where the choice of the training set is part of the learning process. In particular, we consider a choice of the points at which the function is observed based on low-discrepancy sequences, which is a family of sampling methods commonly employed for efficient numerical integration. We prove that, under suitable regularity assumptions, consistency of the empirical risk minimization is guaranteed with a good rate of convergence of the estimation error, as well as the convergence of the approximation error. Simulation results confirm, in practice, the good theoretical properties given by the combination of kernel smoothing models with low-discrepancy sampling.

摘要

本简报分析了用于估计未知目标函数的核平滑模型的性能,其中训练集的选择是学习过程的一部分。特别是,我们考虑了根据低差异序列选择函数观测点的情况,低差异序列是一种常用于高效数值积分的抽样方法。我们证明,在适当的正则性假设下,保证了经验风险最小化的一致性,以及估计误差和逼近误差的良好收敛速度。模拟结果在实践中证实了核平滑模型与低差异抽样相结合所具有的良好理论性质。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验