Suppr超能文献

基于人工神经网络的视图不变动作识别。

View-invariant action recognition based on artificial neural networks.

出版信息

IEEE Trans Neural Netw Learn Syst. 2012 Mar;23(3):412-24. doi: 10.1109/TNNLS.2011.2181865.

Abstract

In this paper, a novel view invariant action recognition method based on neural network representation and recognition is proposed. The novel representation of action videos is based on learning spatially related human body posture prototypes using self organizing maps. Fuzzy distances from human body posture prototypes are used to produce a time invariant action representation. Multilayer perceptrons are used for action classification. The algorithm is trained using data from a multi-camera setup. An arbitrary number of cameras can be used in order to recognize actions using a Bayesian framework. The proposed method can also be applied to videos depicting interactions between humans, without any modification. The use of information captured from different viewing angles leads to high classification performance. The proposed method is the first one that has been tested in challenging experimental setups, a fact that denotes its effectiveness to deal with most of the open issues in action recognition.

摘要

本文提出了一种基于神经网络表示和识别的新的视角不变动作识别方法。动作视频的新表示基于使用自组织图学习空间相关的人体姿势原型。使用人体姿势原型的模糊距离来产生时间不变的动作表示。多层感知器用于动作分类。该算法使用多摄像机设置中的数据进行训练。可以使用任意数量的摄像机,以便使用贝叶斯框架识别动作。所提出的方法也可以应用于描述人类之间交互的视频,而无需任何修改。使用从不同视角捕获的信息可导致高分类性能。所提出的方法是第一个在具有挑战性的实验设置中进行测试的方法,这一事实表明它能够有效地解决动作识别中的大多数开放问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验