Suppr超能文献

使用 Python 进行大规模自动化图像分析,以计算植入神经假体设备周围脑组织的特征。

Large-scale automated image analysis for computational profiling of brain tissue surrounding implanted neuroprosthetic devices using Python.

机构信息

BioImage Analytics Laboratory, Department of Electrical and Computer Engineering, University of Houston Houston, TX, USA.

Center for Integrative Brain Research, Seattle Children's Research Institute Seattle, WA, USA.

出版信息

Front Neuroinform. 2014 Apr 29;8:39. doi: 10.3389/fninf.2014.00039. eCollection 2014.

Abstract

In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.

摘要

在本文中,我们描述了如何在 FARSIGHT 中使用 Python 进行大规模自动化基于服务器的生物图像分析。FARSIGHT 是一个免费的开源图像分析工具包,用于对通过现代光学显微镜(包括共聚焦、多光谱、多光子和延时系统)成像的复杂和动态组织微环境进行定量研究。FARSIGHT 的核心图像分割、特征提取、跟踪和机器学习模块是用 C++编写的,利用了广泛使用的库,包括 ITK、VTK、Boost 和 Qt。为了解决复杂的图像分析任务,这些模块必须使用 Python 组合成脚本。作为一个具体的例子,我们考虑了分析植入神经假体的脑组织周围的 3-D 多光谱图像的问题,这些图像是使用高通量多光谱旋转磁盘逐点重复共聚焦显微镜获得的。得到的图像通常包含 5 个荧光通道。每个通道由 6000×10000×500 个体素组成,每个体素 16 位,意味着图像大小超过 250GB。这些图像必须进行拼接、预处理以克服成像伪影,并进行分割以实现细胞级特征提取。然后,使用这些特征来识别细胞类型,并进行大规模分析,以确定特定细胞类型相对于设备的空间分布。我们使用 Python 构建了一个基于服务器的脚本(每个服务器有 4 个插槽,每个插槽有 10 个核心,每个核心有 2 个线程,每个线程 1TB 的 RAM,运行在 Red Hat Enterprise Linux 上,与 RAID 5 SAN 相连),能够常规地处理这种规模的图像数据集,并在协作式多用户多平台环境中执行所有这些处理步骤。我们的 Python 脚本实现了高效的数据存储和在计算机与存储服务器之间的数据移动,记录所有处理步骤,并对所有代码(包括开源和闭源的第三方库)进行全多线程执行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aa4/4010742/8a06a4fca041/fninf-08-00039-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验