Suppr超能文献

使用Python和scikit-image库分析显微断层扫描数据。

Analyzing microtomography data with Python and the scikit-image library.

作者信息

Gouillart Emmanuelle, Nunez-Iglesias Juan, van der Walt Stéfan

机构信息

Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain, 93303 Aubervilliers, France.

Victorian Life Sciences Computation Initiative, University of Melbourne, Carlton, VIC Australia.

出版信息

Adv Struct Chem Imaging. 2017;2(1):18. doi: 10.1186/s40679-016-0031-0. Epub 2016 Dec 7.

Abstract

The exploration and processing of images is a vital aspect of the scientific workflows of many X-ray imaging modalities. Users require tools that combine interactivity, versatility, and performance. scikit-image is an open-source image processing toolkit for the Python language that supports a large variety of file formats and is compatible with 2D and 3D images. The toolkit exposes a simple programming interface, with thematic modules grouping functions according to their purpose, such as image restoration, segmentation, and measurements. scikit-image users benefit from a rich scientific Python ecosystem that contains many powerful libraries for tasks such as visualization or machine learning. scikit-image combines a gentle learning curve, versatile image processing capabilities, and the scalable performance required for the high-throughput analysis of X-ray imaging data.

摘要

图像的探索与处理是许多X射线成像模式科学工作流程的重要方面。用户需要具备交互性、多功能性和高性能的工具。scikit-image是一个用于Python语言的开源图像处理工具包,支持多种文件格式,并且与2D和3D图像兼容。该工具包提供了一个简单的编程接口,通过主题模块根据功能用途对函数进行分组,如图像恢复、分割和测量。scikit-image的用户受益于丰富的科学Python生态系统,该生态系统包含许多用于可视化或机器学习等任务的强大库。scikit-image结合了平缓的学习曲线、多功能的图像处理能力以及X射线成像数据高通量分析所需的可扩展性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9140/5660892/07e4621fcef7/40679_2016_31_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验