Suppr超能文献

稳健、全局一致且全自动的多通道 3D 图像配准和拼接合成。

Robust, globally consistent and fully automatic multi-image registration and montage synthesis for 3-D multi-channel images.

机构信息

Computer Science Department, Iona College, New Rochelle, NY, USA.

出版信息

J Microsc. 2011 Aug;243(2):154-71. doi: 10.1111/j.1365-2818.2011.03489.x. Epub 2011 Mar 1.

Abstract

The need to map regions of brain tissue that are much wider than the field of view of the microscope arises frequently. One common approach is to collect a series of overlapping partial views, and align them to synthesize a montage covering the entire region of interest. We present a method that advances this approach in multiple ways. Our method (1) produces a globally consistent joint registration of an unorganized collection of three-dimensional (3-D) multi-channel images with or without stage micrometer data; (2) produces accurate registrations withstanding changes in scale, rotation, translation and shear by using a 3-D affine transformation model; (3) achieves complete automation, and does not require any parameter settings; (4) handles low and variable overlaps (5-15%) between adjacent images, minimizing the number of images required to cover a tissue region; (5) has the self-diagnostic ability to recognize registration failures instead of delivering incorrect results; (6) can handle a broad range of biological images by exploiting generic alignment cues from multiple fluorescence channels without requiring segmentation and (7) is computationally efficient enough to run on desktop computers regardless of the number of images. The algorithm was tested with several tissue samples of at least 50 image tiles, involving over 5000 image pairs. It correctly registered all image pairs with an overlap greater than 7%, correctly recognized all failures, and successfully joint-registered all images for all tissue samples studied. This algorithm is disseminated freely to the community as included with the Fluorescence Association Rules for Multi-Dimensional Insight toolkit for microscopy (http://www.farsight-toolkit.org).

摘要

需要经常绘制比显微镜视野宽得多的脑组织区域。一种常见的方法是收集一系列重叠的部分视图,并将它们对齐以合成覆盖整个感兴趣区域的拼贴。我们提出了一种在多个方面推进该方法的方法。我们的方法:

  1. 对无组织的三维(3-D)多通道图像集合进行全局一致的联合配准,无论是否具有载物台微尺数据;

  2. 通过使用 3-D 仿射变换模型产生可抵抗比例、旋转、平移和剪切变化的精确配准;

  3. 实现完全自动化,不需要任何参数设置;

  4. 处理相邻图像之间的低重叠和可变重叠(5-15%),最大限度地减少覆盖组织区域所需的图像数量;

  5. 具有自我诊断能力,能够识别配准失败,而不是提供错误的结果;

  6. 通过利用来自多个荧光通道的通用对齐线索,无需分割即可处理广泛的生物图像;

  7. 计算效率足够高,可以在台式计算机上运行,而与图像数量无关。

该算法已经在至少 50 个图像瓦片的几个组织样本上进行了测试,涉及超过 5000 对图像。它正确地注册了所有重叠大于 7%的图像对,正确地识别了所有失败,并成功地为所有研究的组织样本联合注册了所有图像。该算法作为显微镜的多维度洞察荧光关联规则工具包(http://www.farsight-toolkit.org)的一部分免费分发给社区。

相似文献

10
Affine registration: a comparison of several programs.仿射配准:几种程序的比较
Magn Reson Imaging. 2004 Jan;22(1):55-66. doi: 10.1016/j.mri.2003.05.004.

引用本文的文献

3
A bird's-eye view of deep learning in bioimage analysis.生物图像分析中深度学习的鸟瞰图。
Comput Struct Biotechnol J. 2020 Aug 7;18:2312-2325. doi: 10.1016/j.csbj.2020.08.003. eCollection 2020.
9
Biological imaging software tools.生物成像软件工具。
Nat Methods. 2012 Jun 28;9(7):697-710. doi: 10.1038/nmeth.2084.

本文引用的文献

1
Globally optimal stitching of tiled 3D microscopic image acquisitions.平铺式3D显微图像采集的全局最优拼接
Bioinformatics. 2009 Jun 1;25(11):1463-5. doi: 10.1093/bioinformatics/btp184. Epub 2009 Apr 3.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验