Suppr超能文献

逆转录病毒Gag蛋白的膜相互作用。

Membrane interaction of retroviral Gag proteins.

作者信息

Dick Robert A, Vogt Volker M

机构信息

Department of Molecular Biology and Genetics, Cornell University, Ithaca NY, USA.

出版信息

Front Microbiol. 2014 Apr 29;5:187. doi: 10.3389/fmicb.2014.00187. eCollection 2014.

Abstract

Assembly of an infectious retroviral particle relies on multimerization of the Gag polyprotein at the inner leaflet of the plasma membrane. The three domains of Gag common to all retroviruses - MA, CA, and NC - provide the signals for membrane binding, assembly, and viral RNA packaging, respectively. These signals do not function independently of one another. For example, Gag multimerization enhances membrane binding and is more efficient when NC is interacting with RNA. MA binding to the plasma membrane is governed by several principles, including electrostatics, recognition of specific lipid head groups, hydrophobic interactions, and membrane order. HIV-1 uses many of these principles while Rous sarcoma virus (RSV) appears to use fewer. This review describes the principles that govern Gag interactions with membranes, focusing on RSV and HIV-1 Gag. The review also defines lipid and membrane behavior, and discusses the complexities in determining how lipid and membrane behavior impact Gag membrane binding.

摘要

传染性逆转录病毒颗粒的组装依赖于Gag多聚蛋白在质膜内小叶处的多聚化。所有逆转录病毒共有的Gag的三个结构域——基质蛋白(MA)、衣壳蛋白(CA)和核衣壳蛋白(NC)——分别为膜结合、组装和病毒RNA包装提供信号。这些信号并非彼此独立发挥作用。例如,Gag多聚化增强膜结合,并且当NC与RNA相互作用时效率更高。MA与质膜的结合受多种原则支配,包括静电作用、对特定脂质头部基团的识别、疏水相互作用和膜有序性。人类免疫缺陷病毒1型(HIV-1)利用了其中许多原则,而劳斯肉瘤病毒(RSV)似乎利用的较少。本综述描述了支配Gag与膜相互作用的原则,重点关注RSV和HIV-1 Gag。该综述还定义了脂质和膜的行为,并讨论了在确定脂质和膜行为如何影响Gag膜结合方面的复杂性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8636/4010771/b5cd3391e78e/fmicb-05-00187-g001.jpg

相似文献

1
Membrane interaction of retroviral Gag proteins.
Front Microbiol. 2014 Apr 29;5:187. doi: 10.3389/fmicb.2014.00187. eCollection 2014.
3
Effect of multimerization on membrane association of Rous sarcoma virus and HIV-1 matrix domain proteins.
J Virol. 2013 Dec;87(24):13598-608. doi: 10.1128/JVI.01659-13. Epub 2013 Oct 9.
4
Hydrodynamic and Membrane Binding Properties of Purified Rous Sarcoma Virus Gag Protein.
J Virol. 2015 Oct;89(20):10371-82. doi: 10.1128/JVI.01628-15. Epub 2015 Aug 5.
5
Effects of Membrane Charge and Order on Membrane Binding of the Retroviral Structural Protein Gag.
J Virol. 2016 Sep 29;90(20):9518-32. doi: 10.1128/JVI.01102-16. Print 2016 Oct 15.
7
Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation.
J Virol. 2016 Apr 14;90(9):4544-4555. doi: 10.1128/JVI.02820-15. Print 2016 May.
8
NC-mediated nucleolar localization of retroviral gag proteins.
Virus Res. 2013 Feb;171(2):304-18. doi: 10.1016/j.virusres.2012.09.011. Epub 2012 Oct 2.
9
New insights into the nuclear localization of retroviral Gag proteins.
Nucleus. 2011 Mar-Apr;2(2):92-7. doi: 10.4161/nucl.2.2.15018.

引用本文的文献

1
Structural maturation of the matrix lattice is not required for HIV-1 particle infectivity.
Sci Adv. 2025 May 9;11(19):eadv4356. doi: 10.1126/sciadv.adv4356.
2
Retroviral foamy virus gag induces parkin-dependent mitophagy.
Retrovirology. 2025 May 2;22(1):7. doi: 10.1186/s12977-025-00664-3.
3
Direct lipid interactions control SARS-CoV-2 M protein conformational dynamics and virus assembly.
bioRxiv. 2024 Nov 5:2024.11.04.620124. doi: 10.1101/2024.11.04.620124.
4
A fatty acid-ordered plasma membrane environment is critical for Ebola virus matrix protein assembly and budding.
J Lipid Res. 2024 Nov;65(11):100663. doi: 10.1016/j.jlr.2024.100663. Epub 2024 Oct 5.
5
Cooperative Membrane Binding of HIV-1 Matrix Proteins.
J Phys Chem B. 2024 Mar 21;128(11):2595-2606. doi: 10.1021/acs.jpcb.3c06222. Epub 2024 Mar 13.
6
Molecular dynamics simulations of HIV-1 matrix-membrane interactions at different stages of viral maturation.
Biophys J. 2024 Feb 6;123(3):389-406. doi: 10.1016/j.bpj.2024.01.006. Epub 2024 Jan 9.
8
Conformational transitions of the HIV-1 Gag polyprotein upon multimerization and gRNA binding.
Biophys J. 2024 Jan 2;123(1):42-56. doi: 10.1016/j.bpj.2023.11.017. Epub 2023 Nov 18.
9
Evolutionary conservation of an ancient retroviral gene in Artiodactyla.
J Virol. 2023 Sep 28;97(9):e0053523. doi: 10.1128/jvi.00535-23. Epub 2023 Sep 5.
10
Dynamics of upstream ESCRT organization at the HIV-1 budding site.
Biophys J. 2023 Jul 11;122(13):2655-2674. doi: 10.1016/j.bpj.2023.05.020. Epub 2023 May 22.

本文引用的文献

2
Interrelationship between cytoplasmic retroviral Gag concentration and Gag-membrane association.
J Mol Biol. 2014 Apr 3;426(7):1611-24. doi: 10.1016/j.jmb.2013.11.025. Epub 2013 Dec 4.
3
Effect of multimerization on membrane association of Rous sarcoma virus and HIV-1 matrix domain proteins.
J Virol. 2013 Dec;87(24):13598-608. doi: 10.1128/JVI.01659-13. Epub 2013 Oct 9.
4
Phase diagram of a 4-component lipid mixture: DSPC/DOPC/POPC/chol.
Biochim Biophys Acta. 2013 Sep;1828(9):2204-14. doi: 10.1016/j.bbamem.2013.05.020. Epub 2013 Jun 7.
5
A unique spumavirus Gag N-terminal domain with functional properties of orthoretroviral matrix and capsid.
PLoS Pathog. 2013 May;9(5):e1003376. doi: 10.1371/journal.ppat.1003376. Epub 2013 May 9.
6
7
Trio engagement via plasma membrane phospholipids and the myristoyl moiety governs HIV-1 matrix binding to bilayers.
Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3525-30. doi: 10.1073/pnas.1216655110. Epub 2013 Feb 11.
9
Comparative lipidomics analysis of HIV-1 particles and their producer cell membrane in different cell lines.
Cell Microbiol. 2013 Feb;15(2):292-304. doi: 10.1111/cmi.12101. Epub 2013 Jan 10.
10
Multimerizable HIV Gag derivative binds to the liquid-disordered phase in model membranes.
Cell Microbiol. 2013 Feb;15(2):237-47. doi: 10.1111/cmi.12064. Epub 2012 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验