Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
Biophys J. 2024 Jan 2;123(1):42-56. doi: 10.1016/j.bpj.2023.11.017. Epub 2023 Nov 18.
During the HIV-1 assembly process, the Gag polyprotein multimerizes at the producer cell plasma membrane, resulting in the formation of spherical immature virus particles. Gag-genomic RNA (gRNA) interactions play a crucial role in the multimerization process, which is yet to be fully understood. We performed large-scale all-atom molecular dynamics simulations of membrane-bound full-length Gag dimer, hexamer, and 18-mer. The inter-domain dynamic correlation of Gag, quantified by the heterogeneous elastic network model applied to the simulated trajectories, is observed to be altered by implicit gRNA binding, as well as the multimerization state of the Gag. The lateral dynamics of our simulated membrane-bound Gag proteins, with and without gRNA binding, agree with prior experimental data and help to validate our simulation models and methods. The gRNA binding is observed to affect mainly the SP1 domain of the 18-mer and the matrix-capsid linker domain of the hexamer. In the absence of gRNA binding, the independent dynamical motion of the nucleocapsid domain results in a collapsed state of the dimeric Gag. Unlike stable SP1 helices in the six-helix bundle, without IP6 binding, the SP1 domain undergoes a spontaneous helix-to-coil transition in the dimeric Gag. Together, our findings reveal conformational switches of Gag at different stages of the multimerization process and predict that the gRNA binding reinforces an efficient binding surface of Gag for multimerization, and also regulates the dynamic organization of the local membrane region itself.
在 HIV-1 组装过程中,Gag 多聚蛋白在产生细胞质膜上多聚化,导致形成球形不成熟病毒颗粒。Gag-基因组 RNA(gRNA)相互作用在多聚化过程中起着至关重要的作用,但这一过程尚未被完全理解。我们对膜结合全长 Gag 二聚体、六聚体和 18 聚体进行了大规模的全原子分子动力学模拟。通过应用于模拟轨迹的异质弹性网络模型对 Gag 的结构域间动态相关性进行量化,发现 gRNA 结合以及 Gag 的多聚化状态改变了这种相关性。我们模拟的膜结合 Gag 蛋白的侧向动力学,无论是有还是没有 gRNA 结合,都与先前的实验数据一致,有助于验证我们的模拟模型和方法。gRNA 结合主要影响 18 聚体的 SP1 结构域和六聚体的基质-衣壳连接结构域。在没有 gRNA 结合的情况下,核衣壳结构域的独立动力学运动导致二聚体 Gag 处于塌陷状态。与六螺旋束中稳定的 SP1 螺旋不同,在没有 IP6 结合的情况下,SP1 结构域在二聚体 Gag 中自发地发生螺旋到线圈的转变。总之,我们的研究结果揭示了 Gag 在多聚化过程不同阶段的构象开关,并预测 gRNA 结合增强了 Gag 用于多聚化的有效结合表面,同时也调节了局部膜区域本身的动态组织。