College of Information and Engineering, Taishan Medical University, Taian, 271016 China.
Cogn Neurodyn. 2014 Jun;8(3):217-26. doi: 10.1007/s11571-013-9275-8. Epub 2013 Nov 13.
According to biological knowledge, the central nervous system controls the central pattern generator (CPG) to drive the locomotion. The brain is a complex system consisting of different functions and different interconnections. The topological properties of the brain display features of small-world network. The synchronization and stochastic resonance have important roles in neural information transmission and processing. In order to study the synchronization and stochastic resonance of the brain based on the CPG, we establish the model which shows the relationship between the small-world neural network (SWNN) and the CPG. We analyze the synchronization of the SWNN when the amplitude and frequency of the CPG are changed and the effects on the CPG when the SWNN's parameters are changed. And we also study the stochastic resonance on the SWNN. The main findings include: (1) When the CPG is added into the SWNN, there exists parameters space of the CPG and the SWNN, which can make the synchronization of the SWNN optimum. (2) There exists an optimal noise level at which the resonance factor Q gets its peak value. And the correlation between the pacemaker frequency and the dynamical response of the network is resonantly dependent on the noise intensity. The results could have important implications for biological processes which are about interaction between the neural network and the CPG.
根据生物学知识,中枢神经系统控制中央模式发生器 (CPG) 来驱动运动。大脑是一个由不同功能和不同连接组成的复杂系统。大脑的拓扑性质显示出小世界网络的特征。同步和随机共振在神经信息传递和处理中起着重要作用。为了基于 CPG 研究大脑的同步和随机共振,我们建立了一个显示小世界神经网络 (SWNN) 和 CPG 之间关系的模型。我们分析了 CPG 的幅度和频率变化时 SWNN 的同步情况,以及 SWNN 参数变化时对 CPG 的影响。并且我们还研究了 SWNN 上的随机共振。主要发现包括:(1)当 CPG 被添加到 SWNN 中时,存在 CPG 和 SWNN 的参数空间,可以使 SWNN 的同步达到最佳状态。(2)存在一个最佳噪声水平,在该水平下,共振因子 Q 达到峰值。并且起搏器频率与网络的动力学响应之间的相关性取决于噪声强度的共振依赖性。这些结果对于涉及神经网络和 CPG 之间相互作用的生物过程具有重要意义。