Suppr超能文献

基于 CPG 的小世界神经网络的同步和随机共振。

Synchronization and stochastic resonance of the small-world neural network based on the CPG.

机构信息

College of Information and Engineering, Taishan Medical University, Taian, 271016 China.

出版信息

Cogn Neurodyn. 2014 Jun;8(3):217-26. doi: 10.1007/s11571-013-9275-8. Epub 2013 Nov 13.

Abstract

According to biological knowledge, the central nervous system controls the central pattern generator (CPG) to drive the locomotion. The brain is a complex system consisting of different functions and different interconnections. The topological properties of the brain display features of small-world network. The synchronization and stochastic resonance have important roles in neural information transmission and processing. In order to study the synchronization and stochastic resonance of the brain based on the CPG, we establish the model which shows the relationship between the small-world neural network (SWNN) and the CPG. We analyze the synchronization of the SWNN when the amplitude and frequency of the CPG are changed and the effects on the CPG when the SWNN's parameters are changed. And we also study the stochastic resonance on the SWNN. The main findings include: (1) When the CPG is added into the SWNN, there exists parameters space of the CPG and the SWNN, which can make the synchronization of the SWNN optimum. (2) There exists an optimal noise level at which the resonance factor Q gets its peak value. And the correlation between the pacemaker frequency and the dynamical response of the network is resonantly dependent on the noise intensity. The results could have important implications for biological processes which are about interaction between the neural network and the CPG.

摘要

根据生物学知识,中枢神经系统控制中央模式发生器 (CPG) 来驱动运动。大脑是一个由不同功能和不同连接组成的复杂系统。大脑的拓扑性质显示出小世界网络的特征。同步和随机共振在神经信息传递和处理中起着重要作用。为了基于 CPG 研究大脑的同步和随机共振,我们建立了一个显示小世界神经网络 (SWNN) 和 CPG 之间关系的模型。我们分析了 CPG 的幅度和频率变化时 SWNN 的同步情况,以及 SWNN 参数变化时对 CPG 的影响。并且我们还研究了 SWNN 上的随机共振。主要发现包括:(1)当 CPG 被添加到 SWNN 中时,存在 CPG 和 SWNN 的参数空间,可以使 SWNN 的同步达到最佳状态。(2)存在一个最佳噪声水平,在该水平下,共振因子 Q 达到峰值。并且起搏器频率与网络的动力学响应之间的相关性取决于噪声强度的共振依赖性。这些结果对于涉及神经网络和 CPG 之间相互作用的生物过程具有重要意义。

相似文献

5
Stochastic synchronization of dynamics on the human connectome.人类连接组动力学的随机同步。
Neuroimage. 2021 Apr 1;229:117738. doi: 10.1016/j.neuroimage.2021.117738. Epub 2021 Jan 14.
7
Fast sparsely synchronized brain rhythms in a scale-free neural network.无标度神经网络中的快速稀疏同步脑节律
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022717. doi: 10.1103/PhysRevE.92.022717. Epub 2015 Aug 20.

引用本文的文献

本文引用的文献

3
Doubly stochastic coherence in complex neuronal networks.复杂神经元网络中的双重随机相干性。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 1):051914. doi: 10.1103/PhysRevE.86.051914. Epub 2012 Nov 26.
5
Exploring brain function from anatomical connectivity.从解剖学连接性探索脑功能。
Front Neurosci. 2011 Jun 21;5:83. doi: 10.3389/fnins.2011.00083. eCollection 2011.
6
Neuromodulation and flexibility in Central Pattern Generator networks.中枢模式发生器网络中的神经调节和灵活性。
Curr Opin Neurobiol. 2011 Oct;21(5):685-92. doi: 10.1016/j.conb.2011.05.011. Epub 2011 Jun 7.
7
Analysis of a neural oscillator.神经振荡器分析
Biol Cybern. 2011 May;104(4-5):297-304. doi: 10.1007/s00422-011-0432-z. Epub 2011 May 12.
8
Oscillation propagation in neural networks with different topologies.不同拓扑结构神经网络中的振荡传播。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Mar;83(3 Pt 1):031909. doi: 10.1103/PhysRevE.83.031909. Epub 2011 Mar 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验