Suppr超能文献

奶牛结核病抗性的基因组预测

Genomic prediction for tuberculosis resistance in dairy cattle.

作者信息

Tsairidou Smaragda, Woolliams John A, Allen Adrian R, Skuce Robin A, McBride Stewart H, Wright David M, Bermingham Mairead L, Pong-Wong Ricardo, Matika Oswald, McDowell Stanley W J, Glass Elizabeth J, Bishop Stephen C

机构信息

The Roslin Institute and RDVS, University of Edinburgh, Midlothian, United Kingdom.

Agri-Food and Biosciences Institute, Belfast, United Kingdom.

出版信息

PLoS One. 2014 May 8;9(5):e96728. doi: 10.1371/journal.pone.0096728. eCollection 2014.

Abstract

BACKGROUND

The increasing prevalence of bovine tuberculosis (bTB) in the UK and the limitations of the currently available diagnostic and control methods require the development of complementary approaches to assist in the sustainable control of the disease. One potential approach is the identification of animals that are genetically more resistant to bTB, to enable breeding of animals with enhanced resistance. This paper focuses on prediction of resistance to bTB. We explore estimation of direct genomic estimated breeding values (DGVs) for bTB resistance in UK dairy cattle, using dense SNP chip data, and test these genomic predictions for situations when disease phenotypes are not available on selection candidates.

METHODOLOGY/PRINCIPAL FINDINGS: We estimated DGVs using genomic best linear unbiased prediction methodology, and assessed their predictive accuracies with a cross validation procedure and receiver operator characteristic (ROC) curves. Furthermore, these results were compared with theoretical expectations for prediction accuracy and area-under-the-ROC-curve (AUC). The dataset comprised 1151 Holstein-Friesian cows (bTB cases or controls). All individuals (592 cases and 559 controls) were genotyped for 727,252 loci (Illumina Bead Chip). The estimated observed heritability of bTB resistance was 0.23±0.06 (0.34 on the liability scale) and five-fold cross validation, replicated six times, provided a prediction accuracy of 0.33 (95% C.I.: 0.26, 0.40). ROC curves, and the resulting AUC, gave a probability of 0.58, averaged across six replicates, of correctly classifying cows as diseased or as healthy based on SNP chip genotype alone using these data.

CONCLUSIONS/SIGNIFICANCE: These results provide a first step in the investigation of the potential feasibility of genomic selection for bTB resistance using SNP data. Specifically, they demonstrate that genomic selection is possible, even in populations with no pedigree data and on animals lacking bTB phenotypes. However, a larger training population will be required to improve prediction accuracies.

摘要

背景

英国牛结核病(bTB)的患病率不断上升,且现有诊断和控制方法存在局限性,因此需要开发辅助手段以实现对该疾病的可持续控制。一种潜在方法是识别对bTB具有更高遗传抗性的动物,从而培育出抗性更强的动物。本文聚焦于bTB抗性预测。我们利用密集单核苷酸多态性(SNP)芯片数据,探索英国奶牛bTB抗性的直接基因组估计育种值(DGV)估计方法,并在选择候选动物无疾病表型的情况下测试这些基因组预测。

方法/主要发现:我们使用基因组最佳线性无偏预测方法估计DGV,并通过交叉验证程序和受试者工作特征(ROC)曲线评估其预测准确性。此外,将这些结果与预测准确性和ROC曲线下面积(AUC)的理论预期进行比较。数据集包含1151头荷斯坦 - 弗里生奶牛(bTB病例或对照)。所有个体(592例病例和559例对照)针对727,252个位点进行了基因分型(Illumina Bead Chip)。估计的bTB抗性观测遗传力为0.23±0.06(在易感性尺度上为0.34),五次交叉验证重复六次,预测准确性为0.33(95%置信区间:0.26, 0.40)。ROC曲线及由此得到的AUC显示,基于这些数据仅使用SNP芯片基因型将奶牛正确分类为患病或健康的概率在六次重复中平均为0.58。

结论/意义:这些结果为使用SNP数据进行bTB抗性基因组选择的潜在可行性研究迈出了第一步。具体而言,它们表明即使在没有系谱数据的群体以及缺乏bTB表型的动物中,基因组选择也是可行的。然而,需要更大的训练群体来提高预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79ff/4014548/c6d27c64fb2a/pone.0096728.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验