Suppr超能文献

三种主要类型的CRISPR-Cas系统在嗜热链球菌的CRISPR RNA生物合成过程中独立发挥作用。

The three major types of CRISPR-Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus.

作者信息

Carte Jason, Christopher Ross T, Smith Justin T, Olson Sara, Barrangou Rodolphe, Moineau Sylvain, Glover Claiborne V C, Graveley Brenton R, Terns Rebecca M, Terns Michael P

机构信息

Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA.

出版信息

Mol Microbiol. 2014 Jul;93(1):98-112. doi: 10.1111/mmi.12644. Epub 2014 Jun 4.

Abstract

CRISPR-Cas systems are small RNA-based immune systems that protect prokaryotes from invaders such as viruses and plasmids. We have investigated the features and biogenesis of the CRISPR (cr)RNAs in Streptococcus thermophilus (Sth) strain DGCC7710, which possesses four different CRISPR-Cas systems including representatives from the three major types of CRISPR-Cas systems. Our results indicate that the crRNAs from each CRISPR locus are specifically processed into divergent crRNA species by Cas proteins (and non-coding RNAs) associated with the respective locus. We find that the Csm Type III-A and Cse Type I-E crRNAs are specifically processed by Cas6 and Cse3 (Cas6e), respectively, and retain an 8-nucleotide CRISPR repeat sequence tag 5' of the invader-targeting sequence. The Cse Type I-E crRNAs also retain a 21-nucleotide 3' repeat tag. The crRNAs from the two Csn Type II-A systems in Sth consist of a 5'-truncated targeting sequence and a 3' tag; however, these are distinct in size between the two. Moreover, the Csn1 (Cas9) protein associated with one Csn locus functions specifically in the production of crRNAs from that locus. Our findings indicate that multiple CRISPR-Cas systems can function independently in crRNA biogenesis within a given organism - an important consideration in engineering coexisting CRISPR-Cas pathways.

摘要

CRISPR-Cas系统是基于小RNA的免疫系统,可保护原核生物免受病毒和质粒等入侵者的侵害。我们研究了嗜热链球菌(Sth)菌株DGCC7710中CRISPR(cr)RNA的特征和生物合成,该菌株拥有四种不同的CRISPR-Cas系统,包括来自三种主要类型CRISPR-Cas系统的代表。我们的结果表明,来自每个CRISPR位点的crRNA通过与各自位点相关的Cas蛋白(和非编码RNA)被特异性加工成不同的crRNA种类。我们发现,Csm III-A型和Cse I-E型crRNA分别由Cas6和Cse3(Cas6e)特异性加工,并在靶向入侵者序列的5'端保留一个8核苷酸的CRISPR重复序列标签。Cse I-E型crRNA在3'端还保留一个21核苷酸的重复标签。嗜热链球菌中两个Csn II-A系统的crRNA由一个5'端截短的靶向序列和一个3'端标签组成;然而,两者在大小上有所不同。此外,与一个Csn位点相关的Csn1(Cas9)蛋白在该位点的crRNA产生过程中具有特异性功能。我们的研究结果表明,多个CRISPR-Cas系统可以在给定生物体的crRNA生物合成中独立发挥作用——这是设计共存的CRISPR-Cas途径时的一个重要考虑因素。

相似文献

2
Substrate generation for endonucleases of CRISPR/cas systems.
J Vis Exp. 2012 Sep 8(67):4277. doi: 10.3791/4277.
3
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.
Nature. 2016 Apr 28;532(7600):517-21. doi: 10.1038/nature17945. Epub 2016 Apr 20.
4
crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus.
RNA Biol. 2013 May;10(5):841-51. doi: 10.4161/rna.24203. Epub 2013 Mar 27.
5
The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems.
RNA Biol. 2013 May;10(5):726-37. doi: 10.4161/rna.24321. Epub 2013 Apr 5.
7
The RNA- and DNA-targeting CRISPR-Cas immune systems of Pyrococcus furiosus.
Biochem Soc Trans. 2013 Dec;41(6):1416-21. doi: 10.1042/BST20130056.
8
Programmable plasmid interference by the CRISPR-Cas system in Thermococcus kodakarensis.
RNA Biol. 2013 May;10(5):828-40. doi: 10.4161/rna.24084. Epub 2013 Mar 27.
9
Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation.
Genes Dev. 2015 Feb 15;29(4):356-61. doi: 10.1101/gad.257550.114.
10
Three CRISPR-Cas immune effector complexes coexist in Pyrococcus furiosus.
RNA. 2015 Jun;21(6):1147-58. doi: 10.1261/rna.049130.114. Epub 2015 Apr 22.

引用本文的文献

2
CRISPR-Cas Systems: A Functional Perspective and Innovations.
Int J Mol Sci. 2025 Apr 12;26(8):3645. doi: 10.3390/ijms26083645.
3
DNA target binding-induced pre-crRNA processing in type II and V CRISPR-Cas systems.
Nucleic Acids Res. 2025 Jan 24;53(3). doi: 10.1093/nar/gkae1241.
4
Structure-guided discovery of anti-CRISPR and anti-phage defense proteins.
Nat Commun. 2024 Jan 20;15(1):649. doi: 10.1038/s41467-024-45068-7.
5
CRISPR-Cas-Based Engineering of Probiotics.
Biodes Res. 2023 Sep 29;5:0017. doi: 10.34133/bdr.0017. eCollection 2023.
7
CRISPR-Based Gene Editing in to Combat Antimicrobial Resistance.
Pharmaceuticals (Basel). 2023 Jun 23;16(7):920. doi: 10.3390/ph16070920.
10
Building Blocks of Artificial CRISPR-Based Systems beyond Nucleases.
Int J Mol Sci. 2022 Dec 26;24(1):397. doi: 10.3390/ijms24010397.

本文引用的文献

1
CRISPR-based technologies: prokaryotic defense weapons repurposed.
Trends Genet. 2014 Mar;30(3):111-8. doi: 10.1016/j.tig.2014.01.003. Epub 2014 Feb 18.
2
Orthogonal Cas9 proteins for RNA-guided gene regulation and editing.
Nat Methods. 2013 Nov;10(11):1116-21. doi: 10.1038/nmeth.2681. Epub 2013 Sep 29.
3
The CRISPR craze.
Science. 2013 Aug 23;341(6148):833-6. doi: 10.1126/science.341.6148.833.
4
A ruler protein in a complex for antiviral defense determines the length of small interfering CRISPR RNAs.
J Biol Chem. 2013 Sep 27;288(39):27888-97. doi: 10.1074/jbc.M113.499244. Epub 2013 Aug 9.
6
crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus.
RNA Biol. 2013 May;10(5):841-51. doi: 10.4161/rna.24203. Epub 2013 Mar 27.
7
Programmable plasmid interference by the CRISPR-Cas system in Thermococcus kodakarensis.
RNA Biol. 2013 May;10(5):828-40. doi: 10.4161/rna.24084. Epub 2013 Mar 27.
8
Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos.
Cell Res. 2013 Apr;23(4):465-72. doi: 10.1038/cr.2013.45. Epub 2013 Mar 26.
9
The population and evolutionary dynamics of phage and bacteria with CRISPR-mediated immunity.
PLoS Genet. 2013;9(3):e1003312. doi: 10.1371/journal.pgen.1003312. Epub 2013 Mar 14.
10
CRISPR-mediated adaptive immune systems in bacteria and archaea.
Annu Rev Biochem. 2013;82:237-66. doi: 10.1146/annurev-biochem-072911-172315. Epub 2013 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验