Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA.
Science. 2014 May 9;344(6184):626-30. doi: 10.1126/science.1250444.
Although neuronal spikes can be readily detected from extracellular recordings, synaptic and subthreshold activity remains undifferentiated within the local field potential (LFP). In the hippocampus, neurons discharge selectively when the rat is at certain locations, while LFPs at single anatomical sites exhibit no such place-tuning. Nonetheless, because the representation of position is sparse and distributed, we hypothesized that spatial information can be recovered from multiple-site LFP recordings. Using high-density sampling of LFP and computational methods, we show that the spatiotemporal structure of the theta rhythm can encode position as robustly as neuronal spiking populations. Because our approach exploits the rhythmicity and sparse structure of neural activity, features found in many brain regions, it is useful as a general tool for discovering distributed LFP codes.
尽管神经元尖峰可以从细胞外记录中轻易地检测到,但突触和亚阈值活动在局部场电位 (LFP) 中仍然无法区分。在海马体中,当老鼠处于特定位置时,神经元会选择性地放电,而单个解剖部位的 LFP 则没有这种位置调谐。尽管如此,由于位置的表示是稀疏和分布式的,我们假设可以从多个部位的 LFP 记录中恢复空间信息。使用 LFP 的高密度采样和计算方法,我们表明 theta 节律的时空结构可以像神经元放电群体一样稳健地编码位置。由于我们的方法利用了神经活动的节律性和稀疏结构,这些特征存在于许多脑区中,因此它是一种发现分布式 LFP 编码的有用工具。