Department of Biomedical Engineering, Boston University, Boston, MA, USA.
Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA.
Cell Rep. 2023 Aug 29;42(8):112906. doi: 10.1016/j.celrep.2023.112906. Epub 2023 Aug 3.
Hippocampal CA1 neurons generate single spikes and stereotyped bursts of spikes. However, it is unclear how individual neurons dynamically switch between these output modes and whether these two spiking outputs relay distinct information. We performed extracellular recordings in spatially navigating rats and cellular voltage imaging and optogenetics in awake mice. We found that spike bursts are preferentially linked to cellular and network theta rhythms (3-12 Hz) and encode an animal's position via theta phase precession, particularly as animals are entering a place field. In contrast, single spikes exhibit additional coupling to gamma rhythms (30-100 Hz), particularly as animals leave a place field. Biophysical modeling suggests that intracellular properties alone are sufficient to explain the observed input frequency-dependent spike coding. Thus, hippocampal neurons regulate the generation of bursts and single spikes according to frequency-specific network and intracellular dynamics, suggesting that these spiking modes perform distinct computations to support spatial behavior.
海马体 CA1 神经元可产生单个尖峰和模式化的尖峰爆发。然而,目前尚不清楚单个神经元如何在这两种输出模式之间动态切换,以及这两种尖峰输出是否传递不同的信息。我们在空间导航大鼠中进行了细胞外记录,并在清醒小鼠中进行了细胞电压成像和光遗传学研究。我们发现,尖峰爆发优先与细胞和网络θ节律(3-12 Hz)相关联,并通过θ相位进动来编码动物的位置,特别是当动物进入一个位置场时。相比之下,单个尖峰表现出与γ节律(30-100 Hz)的额外耦合,特别是当动物离开一个位置场时。生物物理建模表明,仅细胞内特性就足以解释观察到的输入频率依赖性尖峰编码。因此,海马体神经元根据特定于频率的网络和细胞内动力学来调节爆发和单个尖峰的产生,这表明这些尖峰模式执行不同的计算以支持空间行为。