Department of Electrical Engineering, Technion¿Israel Institute of Technology, Haifa, Israel.
Computer Science Department, Technion¿Israel Institute of Technology, Haifa, Israel.
IEEE Trans Image Process. 2014 Jun;23(6):2569-2582. doi: 10.1109/TIP.2014.2305844.
We address single image super-resolution using a statistical prediction model based on sparse representations of low- and high-resolution image patches. The suggested model allows us to avoid any invariance assumption, which is a common practice in sparsity-based approaches treating this task. Prediction of high resolution patches is obtained via MMSE estimation and the resulting scheme has the useful interpretation of a feedforward neural network. To further enhance performance, we suggest data clustering and cascading several levels of the basic algorithm. We suggest a training scheme for the resulting network and demonstrate the capabilities of our algorithm, showing its advantages over existing methods based on a low- and high-resolution dictionary pair, in terms of computational complexity, numerical criteria, and visual appearance. The suggested approach offers a desirable compromise between low computational complexity and reconstruction quality, when comparing it with state-of-the-art methods for single image super-resolution.
我们使用基于低分辨率和高分辨率图像块稀疏表示的统计预测模型来解决单幅图像超分辨率问题。所提出的模型允许我们避免任何不变性假设,这是基于稀疏表示的方法处理此任务的常见做法。通过 MMSE 估计获得高分辨率块的预测,并且所得方案具有前馈神经网络的有用解释。为了进一步提高性能,我们建议对数据进行聚类,并级联几个基本算法的级别。我们为所得网络提出了一种训练方案,并展示了我们算法的能力,在计算复杂度、数值标准和视觉外观方面,与基于低分辨率和高分辨率字典对的现有方法相比,展示了我们算法的优势。与单幅图像超分辨率的最新方法相比,当比较该方法与基于最新方法的低计算复杂度和重建质量时,该方法提供了一个理想的折衷方案。