Suppr超能文献

一种基于非下采样Contourlet变换域稀疏表示和和修正拉普拉斯算子的图像融合方法。

An Image Fusion Method Based on Sparse Representation and Sum Modified-Laplacian in NSCT Domain.

作者信息

Li Yuanyuan, Sun Yanjing, Huang Xinhua, Qi Guanqiu, Zheng Mingyao, Zhu Zhiqin

机构信息

School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China.

College of Automation, Chongqing University, Chongqing 400044, China.

出版信息

Entropy (Basel). 2018 Jul 11;20(7):522. doi: 10.3390/e20070522.

Abstract

Multi-modality image fusion provides more comprehensive and sophisticated information in modern medical diagnosis, remote sensing, video surveillance, etc. Traditional multi-scale transform (MST) based image fusion solutions have difficulties in the selection of decomposition level, and the contrast loss in fused image. At the same time, traditional sparse-representation based image fusion methods suffer the weak representation ability of fixed dictionary. In order to overcome these deficiencies of MST- and SR-based methods, this paper proposes an image fusion framework which integrates nonsubsampled contour transformation (NSCT) into sparse representation (SR). In this fusion framework, NSCT is applied to source images decomposition for obtaining corresponding low- and high-pass coefficients. It fuses low- and high-pass coefficients by using SR and Sum Modified-laplacian (SML) respectively. NSCT inversely transforms the fused coefficients to obtain the final fused image. In this framework, a principal component analysis (PCA) is implemented in dictionary training to reduce the dimension of learned dictionary and computation costs. A novel high-pass fusion rule based on SML is applied to suppress pseudo-Gibbs phenomena around singularities of fused image. Compared to three mainstream image fusion solutions, the proposed solution achieves better performance on structural similarity and detail preservation in fused images.

摘要

多模态图像融合在现代医学诊断、遥感、视频监控等领域提供了更全面、复杂的信息。传统的基于多尺度变换(MST)的图像融合解决方案在分解级别选择和融合图像的对比度损失方面存在困难。同时,传统的基于稀疏表示的图像融合方法存在固定字典表示能力弱的问题。为了克服基于MST和SR方法的这些不足,本文提出了一种将非下采样轮廓变换(NSCT)集成到稀疏表示(SR)中的图像融合框架。在这个融合框架中,NSCT应用于源图像分解以获得相应的低通和高通系数。它分别通过使用SR和和修正拉普拉斯算子(SML)融合低通和高通系数。NSCT对融合后的系数进行逆变换以获得最终的融合图像。在这个框架中,在字典训练中实施主成分分析(PCA)以降低学习字典的维度和计算成本。一种基于SML的新型高通融合规则被应用于抑制融合图像奇点周围的伪吉布斯现象。与三种主流图像融合解决方案相比,所提出的解决方案在融合图像的结构相似性和细节保留方面取得了更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ee4/7513046/552013e8642f/entropy-20-00522-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验