Suppr超能文献

肺纤维化大鼠模型中129Xe超极化摄取受损的3D磁共振成像。

3D MRI of impaired hyperpolarized 129Xe uptake in a rat model of pulmonary fibrosis.

作者信息

Cleveland Zackary I, Virgincar Rohan S, Qi Yi, Robertson Scott H, Degan Simone, Driehuys Bastiaan

机构信息

Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, USA.

出版信息

NMR Biomed. 2014 Dec;27(12):1502-14. doi: 10.1002/nbm.3127. Epub 2014 May 12.

Abstract

A variety of pulmonary pathologies, in particular interstitial lung diseases, are characterized by thickening of the pulmonary blood-gas barrier, and this thickening results in reduced gas exchange. Such diffusive impairment is challenging to quantify spatially, because the distributions of the metabolically relevant gases (CO2 and O2) cannot be detected directly within the lungs. Hyperpolarized (HP) (129)Xe is a promising surrogate for these metabolic gases, because MR spectroscopy and imaging allow gaseous alveolar (129)Xe to be detected separately from (129)Xe dissolved in the red blood cells (RBCs) and the adjacent tissues, which comprise blood plasma and lung interstitium. Because (129)Xe reaches the RBCs by diffusing across the same barrier tissues (blood plasma and interstitium) as O2, barrier thickening will delay (129)Xe transit and, thus, reduce RBC-specific (129)Xe MR signal. Here we have exploited these properties to generate 3D, MR images of (129)Xe uptake by the RBCs in two groups of rats. In the experimental group, unilateral fibrotic injury was generated prior to imaging by instilling bleomycin into one lung. In the control group, a unilateral sham instillation of saline was performed. Uptake of (129)Xe by the RBCs, quantified as the fraction of RBC signal relative to total dissolved (129)Xe signal, was significantly reduced (P = 0.03) in the injured lungs of bleomycin-treated animals. In contrast, no significant difference (P = 0.56) was observed between the saline-treated and untreated lungs of control animals. Together, these results indicate that 3D MRI of HP (129)Xe dissolved in the pulmonary tissues can provide useful biomarkers of impaired diffusive gas exchange resulting from fibrotic thickening.

摘要

多种肺部疾病,尤其是间质性肺疾病,其特征在于肺气血屏障增厚,而这种增厚会导致气体交换减少。这种扩散障碍在空间上难以量化,因为肺内无法直接检测到与代谢相关气体(二氧化碳和氧气)的分布。超极化(HP)(129)氙是这些代谢气体的一种有前景的替代物,因为磁共振波谱和成像可以将肺泡气态(129)氙与溶解在红细胞(RBC)以及包括血浆和肺间质在内的相邻组织中的(129)氙分别检测出来。由于(129)氙与氧气一样通过扩散穿过相同的屏障组织(血浆和间质)到达红细胞,屏障增厚会延迟(129)氙的转运,从而降低红细胞特异性(129)氙磁共振信号。在此,我们利用这些特性生成了两组大鼠红细胞摄取(129)氙的三维磁共振图像。在实验组中,在成像前通过向一侧肺内注入博来霉素造成单侧纤维化损伤。在对照组中,进行单侧生理盐水假注射。红细胞摄取(129)氙的量以红细胞信号相对于总溶解(129)氙信号的分数来量化,在博来霉素处理动物的损伤肺中显著降低(P = 0.03)。相比之下,在对照组动物的生理盐水处理肺和未处理肺之间未观察到显著差异(P = 0.56)。总之,这些结果表明,对溶解在肺组织中的超极化(129)氙进行三维磁共振成像可以提供因纤维化增厚导致的扩散性气体交换受损的有用生物标志物。

相似文献

1
3D MRI of impaired hyperpolarized 129Xe uptake in a rat model of pulmonary fibrosis.
NMR Biomed. 2014 Dec;27(12):1502-14. doi: 10.1002/nbm.3127. Epub 2014 May 12.
3
Measuring diffusion limitation with a perfusion-limited gas--hyperpolarized 129Xe gas-transfer spectroscopy in patients with idiopathic pulmonary fibrosis.
J Appl Physiol (1985). 2014 Sep 15;117(6):577-85. doi: 10.1152/japplphysiol.00326.2014. Epub 2014 Jul 18.
4
Hyperpolarized Xe gas transfer MRI: the transition from 1.5T to 3T.
Magn Reson Med. 2018 Dec;80(6):2374-2383. doi: 10.1002/mrm.27377. Epub 2018 Jul 19.
5
Using hyperpolarized Xe MRI to quantify regional gas transfer in idiopathic pulmonary fibrosis.
Thorax. 2018 Jan;73(1):21-28. doi: 10.1136/thoraxjnl-2017-210070. Epub 2017 Aug 31.
8
Quantitative analysis of hyperpolarized Xe gas transfer MRI.
Med Phys. 2017 Jun;44(6):2415-2428. doi: 10.1002/mp.12264. Epub 2017 May 18.
9
Removal of hyperpolarized Xe gas-phase contamination in spectroscopic imaging of the lungs.
Magn Reson Med. 2018 Dec;80(6):2586-2597. doi: 10.1002/mrm.27349. Epub 2018 Jun 12.

引用本文的文献

3
Developing Hyperpolarized Butane Gas for Ventilation Lung Imaging.
Chem Biomed Imaging. 2024 Jul 25;2(10):698-710. doi: 10.1021/cbmi.4c00041. eCollection 2024 Oct 28.
4
5
Compressed sensing reconstruction for high-SNR, rapid dissolved Xe gas exchange MRI.
Magn Reson Med. 2025 Feb;93(2):741-750. doi: 10.1002/mrm.30312. Epub 2024 Sep 25.
6
Hyperpolarized Xenon-129: A New Tool to Assess Pulmonary Physiology in Patients with Pulmonary Fibrosis.
Biomedicines. 2023 May 25;11(6):1533. doi: 10.3390/biomedicines11061533.
7
Lung function measurements in preclinical research: What has been done and where is it headed?
Front Physiol. 2023 Mar 22;14:1130096. doi: 10.3389/fphys.2023.1130096. eCollection 2023.
8
Preclinical MRI Using Hyperpolarized Xe.
Molecules. 2022 Nov 29;27(23):8338. doi: 10.3390/molecules27238338.
9
3D Single-Breath Chemical Shift Imaging Hyperpolarized Xe-129 MRI of Healthy, CF, IPF, and COPD Subjects.
Tomography. 2022 Oct 13;8(5):2574-2587. doi: 10.3390/tomography8050215.

本文引用的文献

2
Probing the regional distribution of pulmonary gas exchange through single-breath gas- and dissolved-phase 129Xe MR imaging.
J Appl Physiol (1985). 2013 Sep;115(6):850-60. doi: 10.1152/japplphysiol.00092.2013. Epub 2013 Jul 11.
3
Regional mapping of gas uptake by blood and tissue in the human lung using hyperpolarized xenon-129 MRI.
J Magn Reson Imaging. 2014 Feb;39(2):346-59. doi: 10.1002/jmri.24181. Epub 2013 May 16.
4
Increased expression of senescence markers in cystic fibrosis airways.
Am J Physiol Lung Cell Mol Physiol. 2013 Mar 15;304(6):L394-400. doi: 10.1152/ajplung.00091.2012. Epub 2013 Jan 11.
5
Pulmonary ventilation visualized using hyperpolarized helium-3 and xenon-129 magnetic resonance imaging: differences in COPD and relationship to emphysema.
J Appl Physiol (1985). 2013 Mar 15;114(6):707-15. doi: 10.1152/japplphysiol.01206.2012. Epub 2012 Dec 13.
8
Hyperpolarized 3He and 129Xe MR imaging in healthy volunteers and patients with chronic obstructive pulmonary disease.
Radiology. 2012 Nov;265(2):600-10. doi: 10.1148/radiol.12120485. Epub 2012 Sep 5.
9
Hyperpolarized 129Xe magnetic resonance imaging: tolerability in healthy volunteers and subjects with pulmonary disease.
Acad Radiol. 2012 Aug;19(8):941-51. doi: 10.1016/j.acra.2012.03.018. Epub 2012 May 15.
10
Imaging for lung physiology: what do we wish we could measure?
J Appl Physiol (1985). 2012 Jul;113(2):317-27. doi: 10.1152/japplphysiol.00146.2012. Epub 2012 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验