Zhang Xin, Chen Weiwei, Wang Jianjun, Shen Yang, Gu Lin, Lin Yuanhua, Nan Ce-Wen
School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University Beijing, 100084, China.
Nanoscale. 2014 Jun 21;6(12):6701-9. doi: 10.1039/c4nr00703d.
Interface issues are common and crucial in nanocomposites or nanohybrid systems since the interface area is enormous on the nanoscale. In the 0-3 dimensional polymer nanocomposites, in which nano-inclusions (0-dimension) are embedded in a 3-dimensionally connected polymer matrix, enhanced dielectric permittivity could be induced by the interfacial polarization at the interfaces between the nano-inclusions and the polymer matrix. In this contribution, we propose and demonstrate that the topological structure of the interface plays an equally important role as the area of the interface in determining the dielectric polarization of polymer nanocomposites. TiO2 nanofibers embedded with BaTiO3 nanoparticles are prepared via electrospinning and then fused with polyvinyl difluoride (PVDF) into polymer nanocomposite films. Modulation of hierarchical interfaces is thus achieved for these nanocomposites. The confinement of these additional interfaces inside the TiO2 nanofibers leads to percolated networks formed by the interfacial regions. The dielectric permittivity of the polymer nanocomposites is thus enhanced by ∼300% over the PVDF matrix at a low filler loading of 11 vol%. A phase-field simulation study indicates that the enhanced dielectric permittivity could be attributed to the increased polarization in the percolated interfacial regions inside the TiO2 nanofibers. The instantaneous electrical breakdown of the TiO2@BaTiO3 nanofibers studied by the in situ transmission electron microscopy method further reveals the striking feature that the breakdown behavior of the nanofibers changes from semiconductive to metallic with the incorporation of insulating BaTiO3 nanoparticles.
在纳米复合材料或纳米杂化体系中,界面问题很常见且至关重要,因为在纳米尺度下界面面积非常大。在0-3维聚合物纳米复合材料中,纳米内含物(0维)嵌入三维连通的聚合物基体中,纳米内含物与聚合物基体之间的界面处的界面极化可诱导介电常数增强。在本论文中,我们提出并证明,在决定聚合物纳米复合材料的介电极化方面,界面的拓扑结构与界面面积起着同样重要的作用。通过静电纺丝制备了嵌入BaTiO3纳米颗粒的TiO2纳米纤维,然后将其与聚偏氟乙烯(PVDF)融合成聚合物纳米复合薄膜。因此,这些纳米复合材料实现了分级界面的调制。TiO2纳米纤维内部这些额外界面导致形成了由界面区域构成的渗流网络。在11 vol%的低填料含量下,聚合物纳米复合材料的介电常数比PVDF基体提高了约300%。相场模拟研究表明,介电常数的提高可归因于TiO2纳米纤维内部渗流界面区域极化的增加。通过原位透射电子显微镜方法研究TiO2@BaTiO3纳米纤维的瞬时电击穿,进一步揭示了一个显著特征,即随着绝缘BaTiO3纳米颗粒的掺入,纳米纤维的击穿行为从半导体转变为金属。