Suppr超能文献

小窝蛋白向线粒体的心脏保护转运是依赖Gi蛋白的。

Cardioprotective trafficking of caveolin to mitochondria is Gi-protein dependent.

作者信息

Wang Jiawan, Schilling Jan M, Niesman Ingrid R, Headrick John P, Finley J Cameron, Kwan Evan, Patel Piyush M, Head Brian P, Roth David M, Yue Yun, Patel Hemal H

机构信息

From the Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China (J.W., Y.Y.); VA San Diego Healthcare System, San Diego, California (P.M.P., B.P.H., D.M.R., H.H.P.); Department of Anesthesiology, University of California, San Diego, California (J.M.S., I.R.N., J.C.F., E.K., P.M.P., B.P.H., D.M.R., H.H.P.); and Heart Foundation Research Center, Griffith University, Gold Coast, Queensland, Australia (J.P.H.).

出版信息

Anesthesiology. 2014 Sep;121(3):538-48. doi: 10.1097/ALN.0000000000000295.

Abstract

BACKGROUND

Caveolae are a nexus for protective signaling. Trafficking of caveolin to mitochondria is essential for adaptation to cellular stress though the trafficking mechanisms remain unknown. The authors hypothesized that G protein-coupled receptor/inhibitory G protein (Gi) activation leads to caveolin trafficking to mitochondria.

METHODS

Mice were exposed to isoflurane or oxygen vehicle (30 min, ± 36 h pertussis toxin pretreatment, an irreversible Gi inhibitor). Caveolin trafficking, cardioprotective "survival kinase" signaling, mitochondrial function, and ultrastructure were assessed.

RESULTS

Isoflurane increased cardiac caveolae (n = 8 per group; data presented as mean ± SD for Ctrl versus isoflurane; [caveolin-1: 1.78 ± 0.12 vs. 3.53 ± 0.77; P < 0.05]; [caveolin-3: 1.68 ± 0.29 vs. 2.67 ± 0.46; P < 0.05]) and mitochondrial caveolin levels (n = 16 per group; [caveolin-1: 0.87 ± 0.18 vs. 1.89 ± .19; P < 0.05]; [caveolin-3: 1.10 ± 0.29 vs. 2.26 ± 0.28; P < 0.05]), and caveolin-enriched mitochondria exhibited improved respiratory function (n = 4 per group; [state 3/complex I: 10.67 ± 1.54 vs. 37.6 ± 7.34; P < 0.05]; [state 3/complex II: 37.19 ± 4.61 vs. 71.48 ± 15.28; P < 0.05]). Isoflurane increased phosphorylation of survival kinases (n = 8 per group; [protein kinase B: 0.63 ± 0.20 vs. 1.47 ± 0.18; P < 0.05]; [glycogen synthase kinase 3β: 1.23 ± 0.20 vs. 2.35 ± 0.20; P < 0.05]). The beneficial effects were blocked by pertussis toxin.

CONCLUSIONS

Gi proteins are involved in trafficking caveolin to mitochondria to enhance stress resistance. Agents that target Gi activation and caveolin trafficking may be viable cardioprotective agents.

摘要

背景

小窝是保护性信号传导的枢纽。尽管小窝蛋白向线粒体的转运机制尚不清楚,但这种转运对于细胞应激适应至关重要。作者推测G蛋白偶联受体/抑制性G蛋白(Gi)激活会导致小窝蛋白向线粒体转运。

方法

将小鼠暴露于异氟烷或氧气载体(30分钟,±36小时百日咳毒素预处理,一种不可逆的Gi抑制剂)。评估小窝蛋白转运、心脏保护“存活激酶”信号传导、线粒体功能和超微结构。

结果

异氟烷增加了心脏小窝(每组n = 8;数据表示为对照组与异氟烷组的平均值±标准差;[小窝蛋白-1:1.78±0.12对3.53±0.77;P < 0.05];[小窝蛋白-3:1.68±0.29对2.67±0.46;P < 0.05])和线粒体小窝蛋白水平(每组n = 16;[小窝蛋白-1:0.87±0.18对1.89±0.19;P < 0.05];[小窝蛋白-3:1.10±0.29对2.26±0.28;P < 0.05]),并且富含小窝蛋白的线粒体表现出改善的呼吸功能(每组n = 4;[状态3/复合体I:10.67±1.54对37.6±7.34;P < 0.05];[状态3/复合体II:37.19±4.61对71.48±15.28;P < 0.05])。异氟烷增加了存活激酶的磷酸化(每组n = 8;[蛋白激酶B:0.63±0.20对1.47±0.18;P < 0.05];[糖原合酶激酶3β:1.23±0.20对2.35±0.20;P < 0.05])。这些有益作用被百日咳毒素阻断。

结论

Gi蛋白参与小窝蛋白向线粒体的转运以增强应激抗性。靶向Gi激活和小窝蛋白转运的药物可能是可行的心脏保护剂。

相似文献

1
Cardioprotective trafficking of caveolin to mitochondria is Gi-protein dependent.
Anesthesiology. 2014 Sep;121(3):538-48. doi: 10.1097/ALN.0000000000000295.
3
Cardiac-specific overexpression of caveolin-3 induces endogenous cardiac protection by mimicking ischemic preconditioning.
Circulation. 2008 Nov 4;118(19):1979-88. doi: 10.1161/CIRCULATIONAHA.108.788331. Epub 2008 Oct 20.
4
Mechanistic insights into δ-opioid-induced cardioprotection: Involvement of caveolin translocation to the mitochondria.
Life Sci. 2020 Apr 15;247:116942. doi: 10.1016/j.lfs.2019.116942. Epub 2019 Nov 9.
6
Caveolin-3 expression and caveolae are required for isoflurane-induced cardiac protection from hypoxia and ischemia/reperfusion injury.
J Mol Cell Cardiol. 2008 Jan;44(1):123-30. doi: 10.1016/j.yjmcc.2007.10.003. Epub 2007 Oct 11.
8
PHO-ERK1/2 interaction with mitochondria regulates the permeability transition pore in cardioprotective signaling.
Life Sci. 2014 Jul 11;108(1):13-21. doi: 10.1016/j.lfs.2014.04.037. Epub 2014 May 14.
10
Role of caveolin-3 and glucose transporter-4 in isoflurane-induced delayed cardiac protection.
Anesthesiology. 2010 May;112(5):1136-45. doi: 10.1097/ALN.0b013e3181d3d624.

引用本文的文献

1
Caveolin-3: therapeutic target for diabetic myocardial ischemia/reperfusion injury.
Mol Med. 2025 Feb 26;31(1):80. doi: 10.1186/s10020-025-01117-5.
3
Cardiac Connexin-43 Hemichannels and Pannexin1 Channels: Provocative Antiarrhythmic Targets.
Int J Mol Sci. 2020 Dec 29;22(1):260. doi: 10.3390/ijms22010260.
5
Caveolin-3 deficiency associated with the dystrophy P104L mutation impairs skeletal muscle mitochondrial form and function.
J Cachexia Sarcopenia Muscle. 2020 Jun;11(3):838-858. doi: 10.1002/jcsm.12541. Epub 2020 Feb 23.
8
Neuron-targeted caveolin-1 improves neuromuscular function and extends survival in SOD1 mice.
FASEB J. 2019 Jun;33(6):7545-7554. doi: 10.1096/fj.201802652RR. Epub 2019 Mar 20.
9
Shear stress augments mitochondrial ATP generation that triggers ATP release and Ca signaling in vascular endothelial cells.
Am J Physiol Heart Circ Physiol. 2018 Nov 1;315(5):H1477-H1485. doi: 10.1152/ajpheart.00204.2018. Epub 2018 Aug 24.
10
Altered Penile Caveolin Expression in Diabetes: Potential Role in Erectile Dysfunction.
J Sex Med. 2017 Oct;14(10):1177-1186. doi: 10.1016/j.jsxm.2017.08.006.

本文引用的文献

1
Tubulin, actin and heterotrimeric G proteins: coordination of signaling and structure.
Biochim Biophys Acta. 2014 Feb;1838(2):674-81. doi: 10.1016/j.bbamem.2013.08.026. Epub 2013 Sep 23.
2
Mitochondria-localized caveolin in adaptation to cellular stress and injury.
FASEB J. 2012 Nov;26(11):4637-49. doi: 10.1096/fj.12-215798. Epub 2012 Aug 2.
3
Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures.
Am J Physiol Heart Circ Physiol. 2011 Nov;301(5):H1723-41. doi: 10.1152/ajpheart.00553.2011. Epub 2011 Aug 19.
5
Role of caveolae in cardiac protection.
Pediatr Cardiol. 2011 Mar;32(3):329-33. doi: 10.1007/s00246-010-9881-8. Epub 2011 Jan 6.
6
Cardiac-specific overexpression of caveolin-3 induces endogenous cardiac protection by mimicking ischemic preconditioning.
Circulation. 2008 Nov 4;118(19):1979-88. doi: 10.1161/CIRCULATIONAHA.108.788331. Epub 2008 Oct 20.
7
Cardiac and coronary function in the Langendorff-perfused mouse heart model.
Exp Physiol. 2009 Jan;94(1):54-70. doi: 10.1113/expphysiol.2008.043554. Epub 2008 Aug 22.
8
Targeted inhibition of cardiomyocyte Gi signaling enhances susceptibility to apoptotic cell death in response to ischemic stress.
Circulation. 2008 Mar 18;117(11):1378-87. doi: 10.1161/CIRCULATIONAHA.107.752618. Epub 2008 Mar 3.
9
Caveolin-3 expression and caveolae are required for isoflurane-induced cardiac protection from hypoxia and ischemia/reperfusion injury.
J Mol Cell Cardiol. 2008 Jan;44(1):123-30. doi: 10.1016/j.yjmcc.2007.10.003. Epub 2007 Oct 11.
10
Caveolae as organizers of pharmacologically relevant signal transduction molecules.
Annu Rev Pharmacol Toxicol. 2008;48:359-91. doi: 10.1146/annurev.pharmtox.48.121506.124841.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验