Parts Leopold, Liu Yi-Chun, Tekkedil Manu M, Steinmetz Lars M, Caudy Amy A, Fraser Andrew G, Boone Charles, Andrews Brenda J, Rosebrock Adam P
Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, M5S3E1, Canada
Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S3E1, Canada;
Genome Res. 2014 Aug;24(8):1363-70. doi: 10.1101/gr.170506.113. Epub 2014 May 13.
The genetic basis of heritable traits has been studied for decades. Although recent mapping efforts have elucidated genetic determinants of transcript levels, mapping of protein abundance has lagged. Here, we analyze levels of 4084 GFP-tagged yeast proteins in the progeny of a cross between a laboratory and a wild strain using flow cytometry and high-content microscopy. The genotype of trans variants contributed little to protein level variation between individual cells but explained >50% of the variance in the population's average protein abundance for half of the GFP fusions tested. To map trans-acting factors responsible, we performed flow sorting and bulk segregant analysis of 25 proteins, finding a median of five protein quantitative trait loci (pQTLs) per GFP fusion. Further, we find that cis-acting variants predominate; the genotype of a gene and its surrounding region had a large effect on protein level six times more frequently than the rest of the genome combined. We present evidence for both shared and independent genetic control of transcript and protein abundance: More than half of the expression QTLs (eQTLs) contribute to changes in protein levels of regulated genes, but several pQTLs do not affect their cognate transcript levels. Allele replacements of genes known to underlie trans eQTL hotspots confirmed the correlation of effects on mRNA and protein levels. This study represents the first genome-scale measurement of genetic contribution to protein levels in single cells and populations, identifies more than a hundred trans pQTLs, and validates the propagation of effects associated with transcript variation to protein abundance.
遗传性性状的遗传基础已经研究了数十年。尽管最近的定位研究已经阐明了转录水平的遗传决定因素,但蛋白质丰度的定位研究却滞后了。在这里,我们使用流式细胞术和高内涵显微镜分析了实验室菌株与野生菌株杂交后代中4084种绿色荧光蛋白(GFP)标记的酵母蛋白的水平。反式变体的基因型对单个细胞间蛋白质水平的变异贡献不大,但对于所测试的一半GFP融合蛋白,它解释了群体平均蛋白质丰度中超过50%的变异。为了定位负责的反式作用因子,我们对25种蛋白质进行了流式分选和大量分离群体分析,发现每个GFP融合蛋白平均有5个蛋白质数量性状位点(pQTL)。此外,我们发现顺式作用变体占主导;一个基因及其周边区域的基因型对蛋白质水平的影响比基因组其他部分的总和大六倍。我们提供了转录本和蛋白质丰度共享和独立遗传控制的证据:超过一半的表达数量性状位点(eQTL)促成了受调控基因蛋白质水平的变化,但有几个pQTL并不影响其同源转录本水平。已知位于反式eQTL热点区域的基因的等位基因替换证实了对mRNA和蛋白质水平影响的相关性。这项研究代表了对单细胞和群体中蛋白质水平遗传贡献进行的首次全基因组规模测量,鉴定出了一百多个反式pQTL,并验证了与转录本变异相关的效应向蛋白质丰度的传递。