Institute of Bioengineering, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15842-7. doi: 10.1073/pnas.1308265110. Epub 2013 Sep 9.
Observing cellular responses to perturbations is central to generating and testing hypotheses in biology. We developed a massively parallel microchemostat array capable of growing and observing 1,152 yeast-GFP strains on the single-cell level with 20 min time resolution. We measured protein abundance and localization changes in 4,085 GFP-tagged strains in response to methyl methanesulfonate and analyzed 576 GFP strains in five additional conditions for a total of more than 10,000 unique experiments, providing a systematic view of the yeast proteome in flux. We observed that processing bodies formed rapidly and synchronously in response to UV irradiation, and in conjunction with 506 deletion-GFP strains, identified four gene disruptions leading to abnormal ribonucleotide-diphosphate reductase (Rnr4) localization. Our microchemostat platform enables the large-scale interrogation of proteomes in flux and permits the concurrent observation of protein abundance, localization, cell size, and growth parameters on the single-cell level for thousands of microbial cultures in one experiment.
观察细胞对扰动的反应是在生物学中产生和检验假设的核心。我们开发了一种大规模并行微恒化器阵列,能够以 20 分钟的时间分辨率在单细胞水平上培养和观察 1152 个酵母-GFP 菌株。我们测量了 4085 个 GFP 标记菌株在甲基甲磺酸和另外五种条件下的蛋白丰度和定位变化,总共进行了超过 10000 次独特的实验,提供了一个酵母蛋白质组在不断变化的系统视图。我们观察到,在受到紫外线照射时,处理体迅速而同步地形成,并且与 506 个缺失 GFP 菌株一起,鉴定出四个导致异常核糖核苷酸二磷酸还原酶(Rnr4)定位的基因破坏。我们的微恒化器平台能够大规模地研究蛋白质组的变化,并能够在一个实验中同时观察数千个微生物培养物的单细胞水平上的蛋白丰度、定位、细胞大小和生长参数。