The term pheromone has been used to describe chemical signaling in most invertebrate and vertebrate groups, including amphibians. Pheromones are typically defined as chemical substances (e.g., a single molecule or a blend of a few molecules) that elicit an innate stereotyped behavior or developmental change in another individual of the same species (reviewed in Wyatt 2010). Pheromones may be water-soluble, volatile, or nonvolatile. In tetrapod vertebrates, they are detected by chemosensory neurons of the olfactory system, both the main olfactory system and the accessory (vomeronasal) olfactory system (Baum and Kelliher 2009). Pheromones are usually categorized according to function as releasers, primers, modulators, and alarm pheromones. Despite years of study, it is still unclear whether pheromones operate differently from nonpheromones, especially in mammals (Doty 2010). Nonetheless, many favor the use of the term pheromone, arguing that the term has intrinsic heuristic value if restricted to chemical emissions shaped by evolution to have a signaling function within a species (Wyatt 2010). Some of the controversy regarding pheromones may arise from the difficulty of translating a concept originally developed in insects to behaviorally and cognitively sophisticated mammals. Study of amphibian chemical signaling can offer insight to the controversy over the nature of pheromones as well as provide general insights to vertebrate chemical communication. Compared to mammals, amphibians have relatively simple nervous systems and express stereotyped behaviors. A number of amphibian pheromones have been characterized and can be used to evaluate concepts related to pheromones. Further, as modern representatives of basal tetrapods, amphibians can provide insight to the evolution of aspects of chemical signaling, such as the evolution of the vomeronasal system. Finally, due to their biphasic life cycle, amphibians are a good model for understanding how chemical signaling functions in aquatic versus terrestrial environments. Chemical signaling is widespread in amphibians. Extant amphibians descended from a common ancestor about 250 million years ago (San Mauro et al. 2005) and consist of anurans (frogs and toads), urodeles (salamanders), and gymnophionans (caecilians). Chemical communication has been well studied in urodeles, for which chemical communication is a dominant sensory modality. Chemical communication has been less studied in anurans but may be more prevalent than realized (Belanger and Corkum 2009; Lee and Waldman 2002; Waldman and Bishop 2004). Compared to the other amphibian orders, little is known about caecilian chemical communication (but see Eisthen and Polese 2006; Reiss and Eisthen 2008). The goals of this chapter are to review chemical signaling in amphibians and to highlight how study of amphibians can offer insight to vertebrate chemical communication. In this review, I will use the term chemosignal to describe chemical information conveyed among members of the same species that has signaling properties. I will discuss the sources of amphibian chemosignals, the function and chemical identity of chemosignals, and the sensory detection of amphibian chemosignals. The review is not meant to be comprehensive, and readers are referred elsewhere for more information (Dawley 1998; Eisthen and Polese 2006; Houck 2009; Kikuyama et al. 2005; Reiss and Eisthen 2008; Woodley 2010).
信息素一词已被用于描述大多数无脊椎动物和脊椎动物群体中的化学信号传递,包括两栖动物。信息素通常被定义为能在同一物种的另一个体中引发先天性刻板行为或发育变化的化学物质(例如,单个分子或几种分子的混合物)(Wyatt 2010年综述)。信息素可能是水溶性的、挥发性的或非挥发性的。在四足脊椎动物中,它们由嗅觉系统的化学感应神经元检测到,包括主嗅觉系统和辅助(犁鼻)嗅觉系统(Baum和Kelliher 2009年)。信息素通常根据功能分为释放素、启动素、调制素和警报信息素。尽管经过多年研究,但信息素的运作方式是否与非信息素不同仍不清楚,尤其是在哺乳动物中(Doty 2010年)。尽管如此,许多人还是倾向于使用信息素这个术语,认为如果将该术语限制于由进化塑造、在物种内具有信号功能的化学排放物,那么它具有内在的启发价值(Wyatt 2010年)。关于信息素的一些争议可能源于将最初在昆虫中发展起来的概念应用于行为和认知复杂的哺乳动物时存在困难。对两栖动物化学信号传递的研究可以为有关信息素本质的争议提供见解,也能为脊椎动物的化学通讯提供一般性见解。与哺乳动物相比,两栖动物的神经系统相对简单,行为刻板。许多两栖动物信息素已被鉴定出来,可用于评估与信息素相关的概念。此外,作为基干四足动物的现代代表,两栖动物可以为化学信号传递方面的进化提供见解,比如犁鼻系统的进化。最后,由于两栖动物具有双相生命周期,它们是理解化学信号在水生和陆地环境中如何发挥作用的良好模型。化学信号传递在两栖动物中很普遍。现存的两栖动物大约在2.5亿年前起源于一个共同祖先(San Mauro等人,2005年),包括无尾目(青蛙和蟾蜍)、有尾目(蝾螈)和蚓螈目(蚓螈)。有尾目动物的化学通讯研究得很充分,化学通讯是其主要的感觉方式。无尾目动物的化学通讯研究较少,但可能比人们意识到的更为普遍(Belanger和Corkum,2009年;Lee和Waldman,2002年;Waldman和Bishop, 2004年)。与其他两栖动物目相比,人们对蚓螈的化学通讯了解甚少(但见Eisthen和Polese,2006年;Reiss和Eisthen,2008年)。本章的目的是综述两栖动物的化学信号传递,并强调对两栖动物的研究如何能为脊椎动物的化学通讯提供见解。在本综述中,我将使用化学信号一词来描述同一物种成员之间传递的具有信号特性的化学信息。我将讨论两栖动物化学信号的来源、化学信号的功能和化学特性,以及两栖动物化学信号的感觉检测。本综述并非旨在全面涵盖,更多信息请读者参考其他文献(Dawley,1998年;Eisthen和Polese,2006年;Houck,2009年;Kikuyama等人,2005年;Reiss和Eisthen,2008年;Woodley,2010年)。