Suppr超能文献

通过体内(1)H NMR 光谱检测脑 NAD(+)。

Detection of cerebral NAD(+) by in vivo (1)H NMR spectroscopy.

机构信息

Department of Diagnostic Radiology, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA.

出版信息

NMR Biomed. 2014 Jul;27(7):802-9. doi: 10.1002/nbm.3121. Epub 2014 May 15.

Abstract

Nicotinamide adenine dinucleotide (NAD(+)) plays a central role in cellular metabolism both as a coenzyme for electron-transfer enzymes as well as a substrate for a wide range of metabolic pathways. In the current study NAD(+) was detected on rat brain in vivo at 11.7T by 3D localized (1)H MRS of the NAD(+) nicotinamide protons in the 8.7-9.5 ppm spectral region. Avoiding water perturbation was critical to the detection of NAD(+) as strong, possibly indirect cross-relaxation between NAD(+) and water would lead to a several-fold reduction of the NAD(+) intensity in the presence of water suppression. Water perturbation was minimized through the use of localization by adiabatic spin-echo refocusing (LASER) in combination with frequency-selective excitation. The NAD(+) concentration in the rat cerebral cortex was determined at 296 ± 28 μm, which is in good agreement with recently published (31) P NMR-based results as well as results from brain extracts in vitro (355 ± 34 μm). The T1 relaxation time constants of the NAD(+) nicotinamide protons as measured by inversion recovery were 280 ± 65 and 1136 ± 122 ms in the absence and presence of water inversion, respectively. This confirms the strong interaction between NAD(+) nicotinamide and water protons as observed during water suppression. The T2 relaxation time constants of the NAD(+) nicotinamide protons were determined at 60 ± 13 ms after confounding effects of scalar coupling evolution were taken into account. The simplicity of the MR sequence together with the robustness of NAD(+) signal detection and quantification makes the presented method a convenient choice for studies on NAD(+) metabolism and function. As the method does not critically rely on magnetic field homogeneity and spectral resolution it should find immediate applications in rodents and humans even at lower magnetic fields.

摘要

烟酰胺腺嘌呤二核苷酸(NAD(+))作为电子转移酶的辅酶以及广泛代谢途径的底物,在细胞代谢中起着核心作用。在本研究中,通过对 8.7-9.5 ppm 谱区中 NAD(+)烟酰胺质子的 3D 局部(1)H MRS 在体内于 11.7T 检测到大鼠脑中的 NAD(+)。避免水干扰对于 NAD(+)的检测至关重要,因为 NAD(+)与水之间可能存在强烈的间接交叉弛豫,这将导致在水抑制存在的情况下 NAD(+)强度降低几倍。通过使用绝热自旋回波重聚焦(LASER)与频率选择激发相结合,最小化了水干扰。在大鼠大脑皮层中,NAD(+)浓度被确定为 296 ± 28 μm,这与最近发表的(31)P NMR 基于结果以及体外脑提取物的结果(355 ± 34 μm)非常吻合。通过反转恢复测量的 NAD(+)烟酰胺质子的 T1 弛豫时间常数在不存在和存在水反转的情况下分别为 280 ± 65 和 1136 ± 122 ms。这证实了在水抑制期间观察到的 NAD(+)烟酰胺和水质子之间的强烈相互作用。在考虑到标量耦合演化的混杂效应后,确定了 NAD(+)烟酰胺质子的 T2 弛豫时间常数为 60 ± 13 ms。该 MR 序列的简单性以及 NAD(+)信号检测和定量的稳健性使得该方法成为研究 NAD(+)代谢和功能的便捷选择。由于该方法不严格依赖于磁场均匀性和光谱分辨率,因此即使在较低磁场下,它也应立即在啮齿动物和人类中得到应用。

相似文献

1
Detection of cerebral NAD(+) by in vivo (1)H NMR spectroscopy.
NMR Biomed. 2014 Jul;27(7):802-9. doi: 10.1002/nbm.3121. Epub 2014 May 15.
2
Detection of cerebral NAD in humans at 7T.
Magn Reson Med. 2017 Sep;78(3):828-835. doi: 10.1002/mrm.26465. Epub 2016 Sep 26.
6
Non-water-excitation MR spectroscopy techniques to explore exchanging protons in human brain at 3 T.
Magn Reson Med. 2020 Nov;84(5):2352-2363. doi: 10.1002/mrm.28322. Epub 2020 Jun 30.
7
Identification of l-Tryptophan by down-field H MRS: A precursor for brain NAD and serotonin syntheses.
Magn Reson Med. 2022 Dec;88(6):2371-2377. doi: 10.1002/mrm.29414. Epub 2022 Aug 25.
9
In vivo H MR spectroscopy with J-refocusing.
Magn Reson Med. 2021 Dec;86(6):2957-2965. doi: 10.1002/mrm.28936. Epub 2021 Jul 26.
10
Simultaneous Analysis of Major Coenzymes of Cellular Redox Reactions and Energy Using ex Vivo (1)H NMR Spectroscopy.
Anal Chem. 2016 May 3;88(9):4817-24. doi: 10.1021/acs.analchem.6b00442. Epub 2016 Apr 14.

引用本文的文献

1
Amide mapping in the human brain using downfield MRSI at 3 T and 7 T.
Magn Reson Med. 2025 Jun;93(6):2254-2262. doi: 10.1002/mrm.30458. Epub 2025 Feb 18.
2
Development of a P magnetic resonance spectroscopy technique to quantify NADH and NAD at 3 T.
Nat Commun. 2024 Oct 24;15(1):9159. doi: 10.1038/s41467-024-53292-4.
3
Optimization of H-MRS methods for large-volume acquisition of low-concentration downfield resonances at 3 T and 7 T.
Magn Reson Med. 2025 Jan;93(1):18-30. doi: 10.1002/mrm.30273. Epub 2024 Sep 9.
4
Acute nicotinamide riboside supplementation increases human cerebral NAD levels in vivo.
Magn Reson Med. 2024 Dec;92(6):2284-2293. doi: 10.1002/mrm.30227. Epub 2024 Jul 23.
5
Regulation of and challenges in targeting NAD metabolism.
Nat Rev Mol Cell Biol. 2024 Oct;25(10):822-840. doi: 10.1038/s41580-024-00752-w. Epub 2024 Jul 18.
7
High-field downfield MR spectroscopic imaging in the human brain.
Magn Reson Med. 2024 Sep;92(3):890-899. doi: 10.1002/mrm.30075. Epub 2024 Mar 12.
8
Fingerstick blood assay maps real-world NAD disparity across gender and age.
Aging Cell. 2023 Oct;22(10):e13965. doi: 10.1111/acel.13965. Epub 2023 Aug 28.
9
Downfield proton MRSI with whole-brain coverage at 3T.
Magn Reson Med. 2023 Sep;90(3):814-822. doi: 10.1002/mrm.29706. Epub 2023 May 30.

本文引用的文献

1
Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice.
Science. 2013 Nov 1;342(6158):1243417. doi: 10.1126/science.1243417. Epub 2013 Sep 19.
2
Longitudinal relaxation enhancement in 1H NMR spectroscopy of tissue metabolites via spectrally selective excitation.
Chemistry. 2013 Sep 23;19(39):13002-8. doi: 10.1002/chem.201300955. Epub 2013 Sep 3.
3
Deacetylation by SIRT1 Reprograms Inflammation and Cancer.
Genes Cancer. 2013 Mar;4(3-4):135-47. doi: 10.1177/1947601913476948.
5
The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing.
Diabetes Obes Metab. 2013 Sep;15 Suppl 3(0 3):26-33. doi: 10.1111/dom.12171.
6
Intracellular redox state revealed by in vivo (31) P MRS measurement of NAD(+) and NADH contents in brains.
Magn Reson Med. 2014 Jun;71(6):1959-72. doi: 10.1002/mrm.24859. Epub 2013 Jul 10.
7
The NAD metabolome--a key determinant of cancer cell biology.
Nat Rev Cancer. 2012 Nov;12(11):741-52. doi: 10.1038/nrc3340. Epub 2012 Sep 28.
8
The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease.
Cell Metab. 2012 Sep 5;16(3):290-5. doi: 10.1016/j.cmet.2012.06.016. Epub 2012 Aug 23.
9
The dynamic regulation of NAD metabolism in mitochondria.
Trends Endocrinol Metab. 2012 Sep;23(9):420-8. doi: 10.1016/j.tem.2012.06.005. Epub 2012 Jul 21.
10
Magnetization exchange with water and T1 relaxation of the downfield resonances in human brain spectra at 3.0 T.
Magn Reson Med. 2011 May;65(5):1239-46. doi: 10.1002/mrm.22813. Epub 2011 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验