Suppr超能文献

用于运动障碍无创康复的闭环脑机身体接口。

Closed-loop brain-machine-body interfaces for noninvasive rehabilitation of movement disorders.

作者信息

Broccard Frédéric D, Mullen Tim, Chi Yu Mike, Peterson David, Iversen John R, Arnold Mike, Kreutz-Delgado Kenneth, Jung Tzyy-Ping, Makeig Scott, Poizner Howard, Sejnowski Terrence, Cauwenberghs Gert

机构信息

Institute for Neural Computation, University of California San Diego, La Jolla, CA, 92093, USA,

出版信息

Ann Biomed Eng. 2014 Aug;42(8):1573-93. doi: 10.1007/s10439-014-1032-6. Epub 2014 May 15.

Abstract

Traditional approaches for neurological rehabilitation of patients affected with movement disorders, such as Parkinson's disease (PD), dystonia, and essential tremor (ET) consist mainly of oral medication, physical therapy, and botulinum toxin injections. Recently, the more invasive method of deep brain stimulation (DBS) showed significant improvement of the physical symptoms associated with these disorders. In the past several years, the adoption of feedback control theory helped DBS protocols to take into account the progressive and dynamic nature of these neurological movement disorders that had largely been ignored so far. As a result, a more efficient and effective management of PD cardinal symptoms has emerged. In this paper, we review closed-loop systems for rehabilitation of movement disorders, focusing on PD, for which several invasive and noninvasive methods have been developed during the last decade, reducing the complications and side effects associated with traditional rehabilitation approaches and paving the way for tailored individual therapeutics. We then present a novel, transformative, noninvasive closed-loop framework based on force neurofeedback and discuss several future developments of closed-loop systems that might bring us closer to individualized solutions for neurological rehabilitation of movement disorders.

摘要

针对患有运动障碍(如帕金森病(PD)、肌张力障碍和特发性震颤(ET))的患者,传统的神经康复方法主要包括口服药物、物理治疗和肉毒杆菌毒素注射。最近,更具侵入性的深部脑刺激(DBS)方法显示出与这些疾病相关的身体症状有显著改善。在过去几年中,反馈控制理论的应用帮助DBS方案考虑到了这些神经运动障碍的渐进性和动态性,而这些特性在很大程度上至今一直被忽视。结果,出现了对帕金森病主要症状更有效且高效的管理方法。在本文中,我们回顾了用于运动障碍康复的闭环系统,重点关注帕金森病,在过去十年中针对该疾病已经开发了几种侵入性和非侵入性方法,减少了与传统康复方法相关的并发症和副作用,并为个性化治疗铺平了道路。然后,我们提出了一种基于力神经反馈的新型、变革性、非侵入性闭环框架,并讨论了闭环系统未来可能使我们更接近运动障碍神经康复个性化解决方案的几个发展方向。

相似文献

1
Closed-loop brain-machine-body interfaces for noninvasive rehabilitation of movement disorders.
Ann Biomed Eng. 2014 Aug;42(8):1573-93. doi: 10.1007/s10439-014-1032-6. Epub 2014 May 15.
2
Approaches to closed-loop deep brain stimulation for movement disorders.
Neurosurg Focus. 2018 Aug;45(2):E2. doi: 10.3171/2018.5.FOCUS18173.
3
Deep Brain Stimulation in Movement Disorders: From Experimental Surgery to Evidence-Based Therapy.
Mov Disord. 2019 Dec;34(12):1795-1810. doi: 10.1002/mds.27860. Epub 2019 Oct 3.
4
Toward Electrophysiology-Based Intelligent Adaptive Deep Brain Stimulation for Movement Disorders.
Neurotherapeutics. 2019 Jan;16(1):105-118. doi: 10.1007/s13311-018-00705-0.
5
Deep brain stimulation for movement disorders: update on recent discoveries and outlook on future developments.
J Neurol. 2015 Nov;262(11):2583-95. doi: 10.1007/s00415-015-7790-8. Epub 2015 Jun 3.
6
Deep brain stimulation for movement disorders.
Neurotherapeutics. 2014 Jul;11(3):465-74. doi: 10.1007/s13311-014-0274-1.
7
9
Closed-loop systems for deep brain stimulation to treat neuropsychiatric disorders.
Expert Rev Med Devices. 2024 Dec;21(12):1141-1152. doi: 10.1080/17434440.2024.2438309. Epub 2024 Dec 10.
10
Postoperative rehabilitation after deep brain stimulation surgery for movement disorders.
Clin Neurophysiol. 2018 Mar;129(3):592-601. doi: 10.1016/j.clinph.2017.12.035. Epub 2018 Jan 10.

引用本文的文献

1
MSHANet: a multi-scale residual network with hybrid attention for motor imagery EEG decoding.
Cogn Neurodyn. 2024 Dec;18(6):3463-3476. doi: 10.1007/s11571-024-10127-8. Epub 2024 May 21.
2
Electroencephalogram-based adaptive closed-loop brain-computer interface in neurorehabilitation: a review.
Front Comput Neurosci. 2024 Sep 20;18:1431815. doi: 10.3389/fncom.2024.1431815. eCollection 2024.
3
Advancements in brain-machine interfaces for application in the metaverse.
Front Neurosci. 2024 Jun 11;18:1383319. doi: 10.3389/fnins.2024.1383319. eCollection 2024.
4
Multi-Modal Rehabilitation Therapy in Parkinson's Disease and Related Disorders.
Ann Indian Acad Neurol. 2023 Jan;26(Suppl 1):S15-S25. doi: 10.4103/aian.aian_164_22. Epub 2022 Nov 21.
5
G-Exos: A wearable gait exoskeleton for walk assistance.
Front Neurorobot. 2022 Nov 10;16:939241. doi: 10.3389/fnbot.2022.939241. eCollection 2022.
6
A Wirelessly Powered 4-Channel Neurostimulator for Reconstructing Walking Trajectory.
Sensors (Basel). 2022 Sep 22;22(19):7198. doi: 10.3390/s22197198.
7
Sharpening Working Memory With Real-Time Electrophysiological Brain Signals: Which Neurofeedback Paradigms Work?
Front Aging Neurosci. 2022 Mar 28;14:780817. doi: 10.3389/fnagi.2022.780817. eCollection 2022.
9
Adaptive Parameter Modulation of Deep Brain Stimulation Based on Improved Supervisory Algorithm.
Front Neurosci. 2021 Sep 16;15:750806. doi: 10.3389/fnins.2021.750806. eCollection 2021.
10
Mind the gap: State-of-the-art technologies and applications for EEG-based brain-computer interfaces.
APL Bioeng. 2021 Jul 20;5(3):031507. doi: 10.1063/5.0047237. eCollection 2021 Sep.

本文引用的文献

1
The functional role of beta oscillations in Parkinson's disease.
Parkinsonism Relat Disord. 2014 Jan;20 Suppl 1:S44-8. doi: 10.1016/S1353-8020(13)70013-0.
2
Simultaneous neural and movement recording in large-scale immersive virtual environments.
IEEE Trans Biomed Circuits Syst. 2013 Oct;7(5):713-21. doi: 10.1109/TBCAS.2012.2236089.
3
Creating new functional circuits for action via brain-machine interfaces.
Front Comput Neurosci. 2013 Nov 5;7:157. doi: 10.3389/fncom.2013.00157.
4
The role of proprioceptive feedback in Parkinsonian resting tremor.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:4969-72. doi: 10.1109/EMBC.2013.6610663.
5
Real-time modeling and 3D visualization of source dynamics and connectivity using wearable EEG.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:2184-7. doi: 10.1109/EMBC.2013.6609968.
6
Finding a roadmap to achieve large neuromorphic hardware systems.
Front Neurosci. 2013 Sep 10;7:118. doi: 10.3389/fnins.2013.00118. eCollection 2013.
7
Parkinson's disease patients show impaired corrective grasp control and eye-hand coupling when reaching to grasp virtual objects.
Neuroscience. 2013 Dec 19;254:205-21. doi: 10.1016/j.neuroscience.2013.09.026. Epub 2013 Sep 19.
8
Human cortical θ during free exploration encodes space and predicts subsequent memory.
J Neurosci. 2013 Sep 18;33(38):15056-68. doi: 10.1523/JNEUROSCI.0268-13.2013.
9
BCILAB: a platform for brain-computer interface development.
J Neural Eng. 2013 Oct;10(5):056014. doi: 10.1088/1741-2560/10/5/056014. Epub 2013 Aug 28.
10
Temporally precise cell-specific coherence develops in corticostriatal networks during learning.
Neuron. 2013 Sep 4;79(5):865-72. doi: 10.1016/j.neuron.2013.06.047. Epub 2013 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验