1UC Berkeley - UCSF Joint Graduate Program in Bioengineering, University of California Berkeley Berkeley, CA, USA.
Front Comput Neurosci. 2013 Nov 5;7:157. doi: 10.3389/fncom.2013.00157.
Brain-machine interfaces (BMIs) are an emerging technology with great promise for developing restorative therapies for those with disabilities. BMIs also create novel, well-defined functional circuits for action that are distinct from the natural sensorimotor apparatus. Closed-loop control of BMI systems can also actively engage learning and adaptation. These properties make BMIs uniquely suited to study learning of motor and non-physical, abstract skills. Recent work used motor BMIs to shed light on the neural representations of skill formation and motor adaptation. Emerging work in sensory BMIs, and other novel interface systems, also highlight the promise of using BMI systems to study fundamental questions in learning and sensorimotor control. This paper outlines the interpretation of BMIs as novel closed-loop systems and the benefits of these systems for studying learning. We review BMI learning studies, their relation to motor control, and propose future directions for this nascent field. Understanding learning in BMIs may both elucidate mechanisms of natural motor and abstract skill learning, and aid in developing the next generation of neuroprostheses.
脑机接口(BMI)是一种有前途的新兴技术,有望为残疾患者开发恢复性疗法。BMI 还为行动创建了新颖的、明确定义的功能回路,这些回路与自然感觉运动装置不同。BMI 系统的闭环控制也可以主动参与学习和适应。这些特性使 BMI 非常适合研究运动和非物理、抽象技能的学习。最近的工作使用运动 BMI 来揭示技能形成和运动适应的神经表示。新兴的感觉 BMI 工作以及其他新型接口系统也突出了使用 BMI 系统研究学习和感觉运动控制基本问题的潜力。本文概述了将 BMI 解释为新型闭环系统的方法,以及这些系统在学习研究中的优势。我们回顾了 BMI 学习研究,及其与运动控制的关系,并为这一新兴领域提出了未来的方向。理解 BMI 中的学习既可以阐明自然运动和抽象技能学习的机制,也有助于开发下一代神经假体。