Suppr超能文献

联合检测/估计任务的估计接收器操作特性曲线和理想观察者。

Estimation receiver operating characteristic curve and ideal observers for combined detection/estimation tasks.

作者信息

Clarkson Eric

机构信息

College of Optical Sciences, The University of Arizona, 1630 East University Boulevard, Tucson, Arizona 85721, USA.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2007 Dec;24(12):B91-8. doi: 10.1364/josaa.24.000b91.

Abstract

The localization receiver operating characteristic (LROC) curve is a standard method to quantify performance for the task of detecting and locating a signal. This curve is generalized to arbitrary detection/estimation tasks to give the estimation ROC (EROC) curve. For a two-alternative forced-choice study, where the observer must decide which of a pair of images has the signal and then estimate parameters pertaining to the signal, it is shown that the average value of the utility on those image pairs where the observer chooses the correct image is an estimate of the area under the EROC curve (AEROC). The ideal LROC observer is generalized to the ideal EROC observer, whose EROC curve lies above those of all other observers for the given detection/estimation task. When the utility function is nonnegative, the ideal EROC observer is shown to share many mathematical properties with the ideal observer for the pure detection task. When the utility function is concave, the ideal EROC observer makes use of the posterior mean estimator. Other estimators that arise as special cases include maximum a posteriori estimators and maximum-likelihood estimators.

摘要

定位接收器操作特性(LROC)曲线是一种用于量化信号检测和定位任务性能的标准方法。该曲线被推广到任意检测/估计任务,以给出估计ROC(EROC)曲线。对于二选一强制选择研究,观察者必须决定一对图像中哪一个有信号,然后估计与信号相关的参数,结果表明,观察者选择正确图像的那些图像对的效用平均值是EROC曲线下面积(AEROC)的估计值。理想LROC观察者被推广到理想EROC观察者,对于给定的检测/估计任务,其EROC曲线位于所有其他观察者的曲线之上。当效用函数为非负时,理想EROC观察者被证明与纯检测任务的理想观察者具有许多数学性质。当效用函数为凹函数时,理想EROC观察者使用后验均值估计器。作为特殊情况出现的其他估计器包括最大后验估计器和最大似然估计器。

相似文献

1
Estimation receiver operating characteristic curve and ideal observers for combined detection/estimation tasks.
J Opt Soc Am A Opt Image Sci Vis. 2007 Dec;24(12):B91-8. doi: 10.1364/josaa.24.000b91.
3
Nonparametric estimation receiver operating characteristic analysis for performance evaluation on combined detection and estimation tasks.
J Med Imaging (Bellingham). 2014 Oct;1(3):031002. doi: 10.1117/1.JMI.1.3.031002. Epub 2014 Aug 26.
4
Risk analysis, ideal observers, and receiver operating characteristic curves for tasks that combine detection and estimation.
J Med Imaging (Bellingham). 2019 Jan;6(1):015502. doi: 10.1117/1.JMI.6.1.015502. Epub 2019 Feb 22.
5
Decision strategies that maximize the area under the LROC curve.
IEEE Trans Med Imaging. 2005 Dec;24(12):1626-36. doi: 10.1109/TMI.2005.859210.
7
Confidence intervals for performance assessment of linear observers.
Med Phys. 2011 Jul;38 Suppl 1(Suppl 1):S57. doi: 10.1118/1.3577764.
8
Optimal Joint Detection and Estimation That Maximizes ROC-Type Curves.
IEEE Trans Med Imaging. 2016 Sep;35(9):2164-73. doi: 10.1109/TMI.2016.2553001. Epub 2016 Apr 13.
9
Shannon information and ROC analysis in imaging.
J Opt Soc Am A Opt Image Sci Vis. 2015 Jul 1;32(7):1288-301. doi: 10.1364/JOSAA.32.001288.
10
Visual perception studies and observer models in medical imaging.
Semin Nucl Med. 2011 Nov;41(6):419-36. doi: 10.1053/j.semnuclmed.2011.06.005.

引用本文的文献

1
Investigating the use of signal detection information in supervised learning-based image denoising with consideration of task-shift.
J Med Imaging (Bellingham). 2024 Sep;11(5):055501. doi: 10.1117/1.JMI.11.5.055501. Epub 2024 Sep 5.
3
Is there a role for image science in the brave new world of artificial intelligence?
J Med Imaging (Bellingham). 2020 Jan;7(1):012702. doi: 10.1117/1.JMI.7.1.012702. Epub 2019 Nov 22.
4
Assessing the Impact of Deep Neural Network-Based Image Denoising on Binary Signal Detection Tasks.
IEEE Trans Med Imaging. 2021 Sep;40(9):2295-2305. doi: 10.1109/TMI.2021.3076810. Epub 2021 Aug 31.
5
Approximating the Ideal Observer for Joint Signal Detection and Localization Tasks by use of Supervised Learning Methods.
IEEE Trans Med Imaging. 2020 Dec;39(12):3992-4000. doi: 10.1109/TMI.2020.3009022. Epub 2020 Nov 30.
6
Objective assessment of the effects of tumor motion in radiation therapy.
Med Phys. 2019 Jul;46(7):3311-3323. doi: 10.1002/mp.13601. Epub 2019 Jun 7.
7
Risk analysis, ideal observers, and receiver operating characteristic curves for tasks that combine detection and estimation.
J Med Imaging (Bellingham). 2019 Jan;6(1):015502. doi: 10.1117/1.JMI.6.1.015502. Epub 2019 Feb 22.
8
Assessing computed tomography image quality for combined detection and estimation tasks.
J Med Imaging (Bellingham). 2017 Oct;4(4):045503. doi: 10.1117/1.JMI.4.4.045503. Epub 2017 Nov 21.
9
Design of a practical model-observer-based image quality assessment method for x-ray computed tomography imaging systems.
J Med Imaging (Bellingham). 2016 Jul;3(3):035503. doi: 10.1117/1.JMI.3.3.035503. Epub 2016 Jul 28.
10
Optimal Joint Detection and Estimation That Maximizes ROC-Type Curves.
IEEE Trans Med Imaging. 2016 Sep;35(9):2164-73. doi: 10.1109/TMI.2016.2553001. Epub 2016 Apr 13.

本文引用的文献

1
Approximations to ideal-observer performance on signal-detection tasks.
Appl Opt. 2000 Apr 10;39(11):1783-93. doi: 10.1364/ao.39.001783.
2
Using Fisher information to approximate ideal-observer performance on detection tasks for lumpy-background images.
J Opt Soc Am A Opt Image Sci Vis. 2006 Oct;23(10):2406-14. doi: 10.1364/josaa.23.002406.
3
Decision strategies that maximize the area under the LROC curve.
IEEE Trans Med Imaging. 2005 Dec;24(12):1626-36. doi: 10.1109/TMI.2005.859210.
4
Ideal-observer computation in medical imaging with use of Markov-chain Monte Carlo techniques.
J Opt Soc Am A Opt Image Sci Vis. 2003 Mar;20(3):430-8. doi: 10.1364/josaa.20.000430.
5
Bounds on the area under the receiver operating characteristic curve for the ideal observer.
J Opt Soc Am A Opt Image Sci Vis. 2002 Oct;19(10):1963-8. doi: 10.1364/josaa.19.001963.
6
Using localization data from image interpretations to improve estimates of performance accuracy.
Med Decis Making. 2000 Apr-Jun;20(2):170-85. doi: 10.1177/0272989X0002000203.
7
Objective assessment of image quality. III. ROC metrics, ideal observers, and likelihood-generating functions.
J Opt Soc Am A Opt Image Sci Vis. 1998 Jun;15(6):1520-35. doi: 10.1364/josaa.15.001520.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验