Suppr超能文献

从尾草履虫基因组序列中获得的关于三次全基因组复制的见解。

Insights into three whole-genome duplications gleaned from the Paramecium caudatum genome sequence.

作者信息

McGrath Casey L, Gout Jean-Francois, Doak Thomas G, Yanagi Akira, Lynch Michael

机构信息

Department of Biology, Indiana University.

Department of Biology, Indiana University National Center for Genome Analysis Support at Indiana University, Bloomington, Indiana 47405.

出版信息

Genetics. 2014 Aug;197(4):1417-28. doi: 10.1534/genetics.114.163287. Epub 2014 May 19.

Abstract

Paramecium has long been a model eukaryote. The sequence of the Paramecium tetraurelia genome reveals a history of three successive whole-genome duplications (WGDs), and the sequences of P. biaurelia and P. sexaurelia suggest that these WGDs are shared by all members of the aurelia species complex. Here, we present the genome sequence of P. caudatum, a species closely related to the P. aurelia species group. P. caudatum shares only the most ancient of the three WGDs with the aurelia complex. We found that P. caudatum maintains twice as many paralogs from this early event as the P. aurelia species, suggesting that post-WGD gene retention is influenced by subsequent WGDs and supporting the importance of selection for dosage in gene retention. The availability of P. caudatum as an outgroup allows an expanded analysis of the aurelia intermediate and recent WGD events. Both the Guanine+Cytosine (GC) content and the expression level of preduplication genes are significant predictors of duplicate retention. We find widespread asymmetrical evolution among aurelia paralogs, which is likely caused by gradual pseudogenization rather than by neofunctionalization. Finally, cases of divergent resolution of intermediate WGD duplicates between aurelia species implicate this process acts as an ongoing reinforcement mechanism of reproductive isolation long after a WGD event.

摘要

草履虫长期以来一直是真核生物的模型。四膜虫的基因组序列揭示了三次连续全基因组复制(WGD)的历史,双小核草履虫和六小核草履虫的序列表明,这些WGD为所有双小核草履虫物种复合体的成员所共有。在此,我们展示了尾草履虫的基因组序列,它是一种与双小核草履虫物种组密切相关的物种。尾草履虫与双小核草履虫复合体仅共享三次WGD中最古老的那次。我们发现,尾草履虫从这一早期事件中保留的旁系同源基因数量是双小核草履虫物种的两倍,这表明WGD后的基因保留受到后续WGD的影响,并支持了基因保留中剂量选择的重要性。尾草履虫作为外类群的可用性使得对双小核草履虫中间和近期WGD事件的分析得以扩展。鸟嘌呤 + 胞嘧啶(GC)含量和复制前基因的表达水平都是重复基因保留的重要预测指标。我们发现双小核草履虫旁系同源基因之间存在广泛的不对称进化,这可能是由渐进的假基因化而非新功能化导致的。最后,双小核草履虫物种之间中间WGD重复基因的分歧解析案例表明,这一过程在WGD事件发生很久之后,仍作为生殖隔离的持续强化机制发挥作用。

相似文献

1
Insights into three whole-genome duplications gleaned from the Paramecium caudatum genome sequence.
Genetics. 2014 Aug;197(4):1417-28. doi: 10.1534/genetics.114.163287. Epub 2014 May 19.
2
Differential retention and divergent resolution of duplicate genes following whole-genome duplication.
Genome Res. 2014 Oct;24(10):1665-75. doi: 10.1101/gr.173740.114. Epub 2014 Aug 1.
5
Population Genomics of Paramecium Species.
Mol Biol Evol. 2017 May 1;34(5):1194-1216. doi: 10.1093/molbev/msx074.
6
Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia.
Nature. 2006 Nov 9;444(7116):171-8. doi: 10.1038/nature05230. Epub 2006 Nov 1.
7
A Population-Genetic Lens into the Process of Gene Loss Following Whole-Genome Duplication.
Mol Biol Evol. 2022 Jun 2;39(6). doi: 10.1093/molbev/msac118.
8
Maintenance and Loss of Duplicated Genes by Dosage Subfunctionalization.
Mol Biol Evol. 2015 Aug;32(8):2141-8. doi: 10.1093/molbev/msv095. Epub 2015 Apr 22.

引用本文的文献

2
A new method for ecologists to estimate heterozygote excess and deficit for multi-locus gene families.
Ecol Evol. 2024 Jul 23;14(7):e11561. doi: 10.1002/ece3.11561. eCollection 2024 Jul.
3
Whole-genome duplication in an algal symbiont bolsters coral heat tolerance.
Sci Adv. 2024 Jul 19;10(29):eadn2218. doi: 10.1126/sciadv.adn2218.
4
Integrative analyses on the ciliates illuminate the life history evolution of soil microorganisms.
mSystems. 2024 Jun 18;9(6):e0137923. doi: 10.1128/msystems.01379-23. Epub 2024 May 31.
6
Somatic genome architecture and molecular evolution are decoupled in "young" linage-specific gene families in ciliates.
PLoS One. 2024 Jan 25;19(1):e0291688. doi: 10.1371/journal.pone.0291688. eCollection 2024.
7
Genetics, Genomics, and Evolution.
Annu Rev Genet. 2023 Nov 27;57:391-410. doi: 10.1146/annurev-genet-071819-104035.
8
Evolutionary bioenergetics of ciliates.
J Eukaryot Microbiol. 2022 Sep;69(5):e12934. doi: 10.1111/jeu.12934. Epub 2022 Jul 28.
9
A Population-Genetic Lens into the Process of Gene Loss Following Whole-Genome Duplication.
Mol Biol Evol. 2022 Jun 2;39(6). doi: 10.1093/molbev/msac118.
10
Convergent evolution of polyploid genomes from across the eukaryotic tree of life.
G3 (Bethesda). 2022 May 30;12(6). doi: 10.1093/g3journal/jkac094.

本文引用的文献

1
The Origin of Interspecific Genomic Incompatibility via Gene Duplication.
Am Nat. 2000 Dec;156(6):590-605. doi: 10.1086/316992.
2
Genome-defence small RNAs exapted for epigenetic mating-type inheritance.
Nature. 2014 May 22;509(7501):447-52. doi: 10.1038/nature13318. Epub 2014 May 7.
5
Differential analysis of gene regulation at transcript resolution with RNA-seq.
Nat Biotechnol. 2013 Jan;31(1):46-53. doi: 10.1038/nbt.2450. Epub 2012 Dec 9.
6
PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees.
Nucleic Acids Res. 2013 Jan;41(Database issue):D377-86. doi: 10.1093/nar/gks1118. Epub 2012 Nov 27.
7
Quorum sensing and density-dependent dispersal in an aquatic model system.
PLoS One. 2012;7(11):e48436. doi: 10.1371/journal.pone.0048436. Epub 2012 Nov 7.
8
Extraordinary genome stability in the ciliate Paramecium tetraurelia.
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19339-44. doi: 10.1073/pnas.1210663109. Epub 2012 Nov 5.
10
Evidence for widespread GC-biased gene conversion in eukaryotes.
Genome Biol Evol. 2012;4(7):675-82. doi: 10.1093/gbe/evs052. Epub 2012 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验