Suppr超能文献

鉴定磷酸转移酶系统(果糖特异性)为丙酮丁醇梭菌的主要果糖摄取系统。

Identification of PTS(Fru) as the major fructose uptake system of Clostridium acetobutylicum.

作者信息

Voigt Christine, Bahl Hubert, Fischer Ralf-Jörg

机构信息

Abteilung Mikrobiologie, Institut für Biowissenschaften, Universität Rostock, Albert-Einstein-Str. 3, 18051, Rostock, Germany.

出版信息

Appl Microbiol Biotechnol. 2014 Aug;98(16):7161-72. doi: 10.1007/s00253-014-5809-1. Epub 2014 May 20.

Abstract

As a member of the saccharolytic clostridia, a variety of different carbohydrates like glucose, fructose, or mannose can be used as carbon and energy source by Clostridium acetobutylicum ATCC 824. Thirteen phosphoenolpyruvate-dependent phosphotransferase systems (PTS) have been identified in C. acetobutylicum, which are likely to be responsible for the uptake of hexoses, hexitols, or disaccharides. Here, we focus on three PTS which are expected to be involved in the uptake of fructose, PTS(Fru), PTS(ManI), and PTS(ManII). To analyze their individual functions, each PTS was inactivated via homologous recombination or insertional mutagenesis. Standardized comparative batch fermentations in a synthetic medium with glucose, fructose, or mannose as sole carbon source identified PTS(Fru) as primary uptake system for fructose, whereas growth with fructose was not impaired in PTS(ManI) and slightly altered in PTS(ManII)-deficient strains of C. acetobutylicum. The inactivation of PTS(ManI) resulted in slower growth on mannose whereas the loss of PTS(ManII) revealed no phenotype during growth on mannose. This is the first time that it has been shown that PTS(Fru) and PTS(ManI) of C. acetobutylicum are directly involved in fructose and mannose uptake, respectively. Moreover, comprehensive comparison of the fermentation products revealed that the loss of PTS(Fru) prevents the solvent shift as no butanol and only basic levels of acetone and ethanol could be determined.

摘要

作为解糖梭菌的一员,丙酮丁醇梭菌ATCC 824能够利用多种不同的碳水化合物,如葡萄糖、果糖或甘露糖作为碳源和能源。在丙酮丁醇梭菌中已鉴定出13种磷酸烯醇丙酮酸依赖性磷酸转移酶系统(PTS),它们可能负责己糖、己糖醇或二糖的摄取。在此,我们聚焦于三种预计参与果糖摄取的PTS,即PTS(Fru)、PTS(ManI)和PTS(ManII)。为了分析它们各自的功能,通过同源重组或插入诱变使每种PTS失活。在以葡萄糖、果糖或甘露糖作为唯一碳源的合成培养基中进行标准化的比较分批发酵,结果表明PTS(Fru)是果糖的主要摄取系统,而在丙酮丁醇梭菌的PTS(ManI)缺失菌株中,果糖生长不受影响,在PTS(ManII)缺失菌株中略有改变。PTS(ManI)失活导致在甘露糖上生长较慢,而PTS(ManII)缺失在甘露糖生长过程中未显示出表型。这是首次表明丙酮丁醇梭菌的PTS(Fru)和PTS(ManI)分别直接参与果糖和甘露糖的摄取。此外,对发酵产物的全面比较表明,PTS(Fru)的缺失阻止了溶剂转变,因为无法检测到丁醇,仅能检测到基本水平的丙酮和乙醇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验