Suppr超能文献

丙酮丁醇梭菌ATCC 824中乳糖转运与代谢的机制及调控分析

Analysis of the mechanism and regulation of lactose transport and metabolism in Clostridium acetobutylicum ATCC 824.

作者信息

Yu Yang, Tangney Martin, Aass Hans C, Mitchell Wilfrid J

机构信息

School of Life Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom.

出版信息

Appl Environ Microbiol. 2007 Mar;73(6):1842-50. doi: 10.1128/AEM.02082-06. Epub 2007 Jan 5.

Abstract

Although the acetone-butanol-ethanol fermentation of Clostridium acetobutylicum is currently uneconomic, the ability of the bacterium to metabolize a wide range of carbohydrates offers the potential for revival based on the use of cheap, low-grade substrates. We have investigated the uptake and metabolism of lactose, the major sugar in industrial whey waste, by C. acetobutylicum ATCC 824. Lactose is taken up via a phosphoenolpyruvate-dependent phosphotransferase system (PTS) comprising both soluble and membrane-associated components, and the resulting phosphorylated derivative is hydrolyzed by a phospho-beta-galactosidase. These activities are induced during growth on lactose but are absent in glucose-grown cells. Analysis of the C. acetobutylicum genome sequence identified a gene system, lacRFEG, encoding a transcriptional regulator of the DeoR family, IIA and IICB components of a lactose PTS, and phospho-beta-galactosidase. During growth in medium containing both glucose and lactose, C. acetobutylicum exhibited a classical diauxic growth, and the lac operon was not expressed until glucose was exhausted from the medium. The presence upstream of lacR of a potential catabolite responsive element (cre) encompassing the transcriptional start site is indicative of the mechanism of carbon catabolite repression characteristic of low-GC gram-positive bacteria. A pathway for the uptake and metabolism of lactose by this industrially important organism is proposed.

摘要

尽管丙酮丁醇梭菌的丙酮 - 丁醇 - 乙醇发酵目前在经济上不可行,但该细菌代谢多种碳水化合物的能力为基于使用廉价、低质量底物实现复苏提供了潜力。我们研究了丙酮丁醇梭菌ATCC 824对工业乳清废料中的主要糖类乳糖的摄取和代谢情况。乳糖通过一种依赖磷酸烯醇丙酮酸的磷酸转移酶系统(PTS)被摄取,该系统包含可溶性和膜相关成分,产生的磷酸化衍生物由磷酸β - 半乳糖苷酶水解。这些活性在乳糖上生长时被诱导,但在葡萄糖培养的细胞中不存在。对丙酮丁醇梭菌基因组序列的分析确定了一个基因系统lacRFEG,其编码DeoR家族的转录调节因子、乳糖PTS的IIA和IICB成分以及磷酸β - 半乳糖苷酶。在含有葡萄糖和乳糖的培养基中生长时,丙酮丁醇梭菌表现出典型的二次生长,并且直到培养基中的葡萄糖耗尽,lac操纵子才会表达。lacR上游存在一个潜在的分解代谢物反应元件(cre),其包含转录起始位点,这表明了低GC革兰氏阳性细菌典型的碳分解代谢物阻遏机制。本文提出了这种具有工业重要性的生物体摄取和代谢乳糖的途径。

相似文献

1
Analysis of the mechanism and regulation of lactose transport and metabolism in Clostridium acetobutylicum ATCC 824.
Appl Environ Microbiol. 2007 Mar;73(6):1842-50. doi: 10.1128/AEM.02082-06. Epub 2007 Jan 5.
2
Characterisation of a glucose phosphotransferase system in Clostridium acetobutylicum ATCC 824.
Appl Microbiol Biotechnol. 2007 Feb;74(2):398-405. doi: 10.1007/s00253-006-0679-9. Epub 2006 Nov 10.
3
Transcriptional analysis of differential carbohydrate utilization by Clostridium acetobutylicum.
Microbiology (Reading). 2010 Nov;156(Pt 11):3478-3491. doi: 10.1099/mic.0.037085-0. Epub 2010 Jul 23.
5
Elimination of carbon catabolite repression in Clostridium acetobutylicum--a journey toward simultaneous use of xylose and glucose.
Appl Microbiol Biotechnol. 2015 Sep;99(18):7579-88. doi: 10.1007/s00253-015-6611-4. Epub 2015 May 19.
6
Identification of PTS(Fru) as the major fructose uptake system of Clostridium acetobutylicum.
Appl Microbiol Biotechnol. 2014 Aug;98(16):7161-72. doi: 10.1007/s00253-014-5809-1. Epub 2014 May 20.
7
Analysis of the elements of catabolite repression in Clostridium acetobutylicum ATCC 824.
J Mol Microbiol Biotechnol. 2003;6(1):6-11. doi: 10.1159/000073403.
9
Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei.
J Bacteriol. 1999 Jul;181(13):3928-34. doi: 10.1128/JB.181.13.3928-3934.1999.

引用本文的文献

1
Internal Transcription Terminators Control Stoichiometry of ABC Transporters in Cellulolytic Clostridia.
Microbiol Spectr. 2022 Apr 27;10(2):e0165621. doi: 10.1128/spectrum.01656-21. Epub 2022 Mar 14.
5
Sugar uptake by the solventogenic clostridia.
World J Microbiol Biotechnol. 2016 Feb;32(2):32. doi: 10.1007/s11274-015-1981-4. Epub 2016 Jan 9.
6
Differential assemblage of functional units in paddy soil microbiomes.
PLoS One. 2015 Apr 21;10(4):e0122221. doi: 10.1371/journal.pone.0122221. eCollection 2015.
7
Biobutanol from cheese whey.
Microb Cell Fact. 2015 Mar 5;14:27. doi: 10.1186/s12934-015-0200-1.
9
10
Dual substrate specificity of an N-acetylglucosamine phosphotransferase system in Clostridium beijerinckii.
Appl Environ Microbiol. 2013 Nov;79(21):6712-8. doi: 10.1128/AEM.01866-13. Epub 2013 Aug 30.

本文引用的文献

1
Nutritional Factors Affecting the Ratio of Solvents Produced by Clostridium acetobutylicum.
Appl Environ Microbiol. 1986 Jul;52(1):169-72. doi: 10.1128/aem.52.1.169-172.1986.
2
Analysis of the elements of catabolite repression in Clostridium acetobutylicum ATCC 824.
J Mol Microbiol Biotechnol. 2003;6(1):6-11. doi: 10.1159/000073403.
3
Multiple sequence alignment with the Clustal series of programs.
Nucleic Acids Res. 2003 Jul 1;31(13):3497-500. doi: 10.1093/nar/gkg500.
4
Characterization of a maltose transport system in Clostridium acetobutylicum ATCC 824.
J Ind Microbiol Biotechnol. 2001 Nov;27(5):298-306. doi: 10.1038/sj.jim.7000125.
5
Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum.
J Bacteriol. 2001 Aug;183(16):4823-38. doi: 10.1128/JB.183.16.4823-4838.2001.
8
Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis.
Nucleic Acids Res. 2000 Mar 1;28(5):1206-10. doi: 10.1093/nar/28.5.1206.
9
Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei.
J Bacteriol. 1999 Jul;181(13):3928-34. doi: 10.1128/JB.181.13.3928-3934.1999.
10
Physiology of carbohydrate to solvent conversion by clostridia.
Adv Microb Physiol. 1998;39:31-130. doi: 10.1016/s0065-2911(08)60015-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验