Suppr超能文献

聚合物-碳纳米管异质结中的电子和空穴转移的不对称性。

Asymmetry in the electron and hole transfer at a polymer-carbon nanotube heterojunction.

机构信息

School of Physics, Complex & Adaptive Systems Laboratory, University College Dublin , Belfield, Dublin 4, Ireland.

出版信息

Nano Lett. 2014 Jun 11;14(6):3335-41. doi: 10.1021/nl500792a. Epub 2014 May 21.

Abstract

To achieve a high photon-to-charge conversion efficiency, the electron-hole pair generated by photon absorption in organic photovoltaic systems must overcome the Coulomb attraction, which often results in voltage loss. Bearing this in mind, we performed ab initio time-domain simulations of the charge separation and energy relaxation across an interface formed by poly(3-hexylthiophene) (P3HT) and a single-walled carbon nanotube (CNT). The dynamics of the positive and negative charges showed strong asymmetry. Photoexcitation of the polymer leads to a 100 fs electron transfer, in agreement with the experiment, followed by a loss of 0.6 eV of energy within 0.5 ps. Photoexcitation of the CNT leads to hole transfer, which requires nearly 2 ps, but loses only 0.3 eV of energy. The strong disparity arises due to the differences in the localization of the photoexcited donor states, the number densities of the acceptor states, and the phonon modes involved. Used as a chromophore, P3HT produces faster charge separation but leads to larger energy losses and cannot harvest light in the red region of the solar spectrum. In contrast, CNT absorbs a broader range of photons and reduces energy losses but gives a less efficient charge separation. The complementary properties of the two chromophores can be utilized to improve the performance of solar cells by optimizing simultaneously light harvesting, charge separation, and energy relaxation, which affect the photovoltaic yield, current, and voltage.

摘要

为了实现高的光子-电荷转换效率,在有机光伏系统中,光子吸收产生的电子-空穴对必须克服库仑吸引,这往往会导致电压损失。考虑到这一点,我们对由聚(3-己基噻吩)(P3HT)和单壁碳纳米管(CNT)形成的界面进行了从头算时域模拟,以研究电荷分离和能量弛豫的动力学。正电荷和负电荷的动力学表现出强烈的不对称性。聚合物的光激发导致 100 fs 的电子转移,这与实验一致,随后在 0.5 ps 内损失 0.6 eV 的能量。CNT 的光激发导致空穴转移,这需要近 2 ps,但只损失 0.3 eV 的能量。这种强烈的差异源于光激发施主态的局域化、受主态的数密度以及所涉及的声子模式的差异。作为发色团,P3HT 产生更快的电荷分离,但导致更大的能量损失,并且不能在太阳光谱的红光区域收集光。相比之下,CNT 吸收更广泛范围的光子并减少能量损失,但电荷分离效率较低。两种发色团的互补特性可用于通过同时优化光捕获、电荷分离和能量弛豫来提高太阳能电池的性能,这些特性会影响光伏产量、电流和电压。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验