Verschuren Centre for Sustainability in Energy and the Environment, Cape Breton University , 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada.
Institute for Materials Science, University of Duisburg-Essen and Centre for Nanointegration Duisburg-Essen (CeNIDE) , Essen 45141, Germany.
ACS Appl Mater Interfaces. 2017 Jun 7;9(22):19030-19039. doi: 10.1021/acsami.7b04028. Epub 2017 May 22.
Clues to designing highly efficient organic solar cells may lie in understanding the architecture of light-harvesting systems and exciton energy transfer (EET) processes in very efficient photosynthetic organisms. Here, we compare the kinetics of excitation energy tunnelling from the intact phycobilisome (PBS) light-harvesting antenna system to the reaction center in photosystem II in intact cells of the cyanobacterium Acaryochloris marina with the charge transfer after conversion of photons into photocurrent in vertically aligned carbon nanotube (va-CNT) organic solar cells with poly(3-hexyl)thiophene (P3HT) as the pigment. We find that the kinetics in electron hole creation following excitation at 600 nm in both PBS and va-CNT solar cells to be 450 and 500 fs, respectively. The EET process has a 3 and 14 ps pathway in the PBS, while in va-CNT solar cell devices, the charge trapping in the CNT takes 11 and 258 ps. We show that the main hindrance to efficiency of va-CNT organic solar cells is the slow migration of the charges after exciton formation.
设计高效有机太阳能电池的线索可能在于理解在非常有效的光合作用生物中光捕获系统的结构和激子能量转移 (EET) 过程。在这里,我们将完整的藻胆体 (PBS) 光捕获天线系统从完整细胞中的激发能量隧穿到光系统 II 中的反应中心的动力学与垂直排列的碳纳米管 (va-CNT) 有机太阳能电池中的电荷转移进行比较聚(3-己基)噻吩 (P3HT) 作为颜料后将光子转换为光电流。我们发现,在 PBS 和 va-CNT 太阳能电池中,在 600nm 激发下,电子空穴的产生动力学分别为 450 和 500fs。EET 过程在 PBS 中有 3 和 14ps 的途径,而在 va-CNT 太阳能电池器件中,CNT 中的电荷俘获需要 11 和 258ps。我们表明,va-CNT 有机太阳能电池效率的主要障碍是激子形成后电荷的缓慢迁移。