Suppr超能文献

组织工程中的无机纳米材料

Inorganic Nanomaterials in Tissue Engineering.

作者信息

Bianchi Eleonora, Vigani Barbara, Viseras César, Ferrari Franca, Rossi Silvia, Sandri Giuseppina

机构信息

Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.

Department of Pharmacy and Pharmaceutical Technology, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain.

出版信息

Pharmaceutics. 2022 May 26;14(6):1127. doi: 10.3390/pharmaceutics14061127.

Abstract

In recent decades, the demand for replacement of damaged or broken tissues has increased; this poses the attention on problems related to low donor availability. For this reason, researchers focused their attention on the field of tissue engineering, which allows the development of scaffolds able to mimic the tissues' extracellular matrix. However, tissue replacement and regeneration are complex since scaffolds need to guarantee an adequate hierarchical structured morphology as well as adequate mechanical, chemical, and physical properties to stand the stresses and enhance the new tissue formation. For this purpose, the use of inorganic materials as fillers for the scaffolds has gained great interest in tissue engineering applications, due to their wide range of physicochemical properties as well as their capability to induce biological responses. However, some issues still need to be faced to improve their efficacy. This review focuses on the description of the most effective inorganic nanomaterials (clays, nano-based nanomaterials, metal oxides, metallic nanoparticles) used in tissue engineering and their properties. Particular attention has been devoted to their combination with scaffolds in a wide range of applications. In particular, skin, orthopaedic, and neural tissue engineering have been considered.

摘要

近几十年来,对受损或破损组织进行替换的需求不断增加;这使得人们关注到与供体可用性低相关的问题。因此,研究人员将注意力集中在组织工程领域,该领域能够开发出能够模拟组织细胞外基质的支架。然而,组织替换和再生是复杂的,因为支架需要保证具有足够的层次结构形态以及足够的机械、化学和物理性能,以承受压力并促进新组织的形成。为此,将无机材料用作支架的填料在组织工程应用中引起了极大的兴趣,这是由于它们具有广泛的物理化学性质以及诱导生物反应的能力。然而,仍需面对一些问题以提高其功效。本综述着重描述了在组织工程中使用的最有效的无机纳米材料(粘土、纳米基纳米材料、金属氧化物、金属纳米颗粒)及其特性。特别关注了它们在广泛应用中与支架的结合。具体而言,已考虑了皮肤、骨科和神经组织工程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a1/9231279/4a51a60037fc/pharmaceutics-14-01127-g001.jpg

相似文献

1
Inorganic Nanomaterials in Tissue Engineering.
Pharmaceutics. 2022 May 26;14(6):1127. doi: 10.3390/pharmaceutics14061127.
2
Innovative Strategies in Tendon Tissue Engineering.
Pharmaceutics. 2021 Jan 11;13(1):89. doi: 10.3390/pharmaceutics13010089.
3
Reinforcing materials for polymeric tissue engineering scaffolds: A review.
J Biomed Mater Res B Appl Biomater. 2019 Jul;107(5):1560-1575. doi: 10.1002/jbm.b.34248. Epub 2018 Oct 14.
4
Nanostructured Materials for Artificial Tissue Replacements.
Int J Mol Sci. 2020 Apr 5;21(7):2521. doi: 10.3390/ijms21072521.
5
Electrospinning Inorganic Nanomaterials to Fabricate Bionanocomposites for Soft and Hard Tissue Repair.
Nanomaterials (Basel). 2023 Jan 2;13(1):204. doi: 10.3390/nano13010204.
6
An update on the Application of Nanotechnology in Bone Tissue Engineering.
Open Orthop J. 2016 Dec 30;10:836-848. doi: 10.2174/1874325001610010836. eCollection 2016.
7
Novel Inorganic Nanomaterial-Based Therapy for Bone Tissue Regeneration.
Nanomaterials (Basel). 2021 Mar 19;11(3):789. doi: 10.3390/nano11030789.
8
Nanocomposite hydrogels for cartilage tissue engineering: a review.
Artif Cells Nanomed Biotechnol. 2018 May;46(3):465-471. doi: 10.1080/21691401.2017.1345924. Epub 2017 Jul 25.
9
Recent Advances in the Application of Two-Dimensional Nanomaterials for Neural Tissue Engineering and Regeneration.
ACS Biomater Sci Eng. 2021 Aug 9;7(8):3503-3529. doi: 10.1021/acsbiomaterials.1c00490. Epub 2021 Jul 22.
10
Silk scaffolds in bone tissue engineering: An overview.
Acta Biomater. 2017 Nov;63:1-17. doi: 10.1016/j.actbio.2017.09.027. Epub 2017 Sep 20.

引用本文的文献

1
From Bone To Blood Flow: Tissue Engineering In Orthopedics - A Narrative Review.
Orthop Rev (Pavia). 2025 Mar 31;17:132223. doi: 10.52965/001c.132223. eCollection 2025.
2
Application of Nanomaterials Targeting Immune Cells in the Treatment of Chronic Inflammation.
Int J Nanomedicine. 2024 Dec 25;19:13925-13946. doi: 10.2147/IJN.S497590. eCollection 2024.
3
Progress in the Application of Multifunctional Composite Hydrogels in Promoting Tissue Repair.
ACS Omega. 2024 Nov 21;9(49):47964-47975. doi: 10.1021/acsomega.4c08103. eCollection 2024 Dec 10.
4
Applications and interventions of polymers and nanomaterials in alveolar bone regeneration and tooth dentistry.
RSC Adv. 2024 Nov 12;14(49):36226-36245. doi: 10.1039/d4ra06092j. eCollection 2024 Nov 11.
5
Chitosan-Peptide Composites for Tissue Engineering Applications: Advances in Treatment Strategies.
Curr Protein Pept Sci. 2025;26(3):185-200. doi: 10.2174/0113892037323136240910052119.
10
Biocompatible Nanocomposites for Postoperative Adhesion: A State-of-the-Art Review.
Nanomaterials (Basel). 2023 Dec 19;14(1):4. doi: 10.3390/nano14010004.

本文引用的文献

1
Retracted: Characterization of enhanced antibacterial effects of novel silver nanoparticles.
Nanotechnology. 2007 May 4;18(22). doi: 10.1088/0957-4484/18/22/225103.
2
Magnetic biomaterials and nano-instructive tools as mediators of tendon mechanotransduction.
Nanoscale Adv. 2019 Dec 5;2(1):140-148. doi: 10.1039/c9na00615j. eCollection 2020 Jan 22.
3
Smart Device for Biologically Enhanced Functional Regeneration of Osteo-Tendon Interface.
Pharmaceutics. 2021 Nov 24;13(12):1996. doi: 10.3390/pharmaceutics13121996.
5
Injectable chitosan hydrogel embedding modified halloysite nanotubes for bone tissue engineering.
Carbohydr Polym. 2021 Oct 1;269:118311. doi: 10.1016/j.carbpol.2021.118311. Epub 2021 Jun 7.
6
Design, fabrication and drug release potential of dual stimuli-responsive composite hydrogel nanoparticle interfaces.
Colloids Surf B Biointerfaces. 2021 Aug;204:111819. doi: 10.1016/j.colsurfb.2021.111819. Epub 2021 May 4.
7
Manufacture and mechanical properties of knee implants using SWCNTs/UHMWPE composites.
J Mech Behav Biomed Mater. 2021 Aug;120:104554. doi: 10.1016/j.jmbbm.2021.104554. Epub 2021 Apr 24.
9
Halloysite Nanotube Based Scaffold for Enhanced Bone Regeneration.
ACS Biomater Sci Eng. 2019 Aug 12;5(8):4037-4047. doi: 10.1021/acsbiomaterials.9b00277. Epub 2019 Jul 9.
10
Innovative Strategies in Tendon Tissue Engineering.
Pharmaceutics. 2021 Jan 11;13(1):89. doi: 10.3390/pharmaceutics13010089.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验