Kim Ji-Hee, Lee Kwang-Soon, Lee Dong-Keon, Kim Joohwan, Kwak Su-Nam, Ha Kwon-Soo, Choe Jongseon, Won Moo-Ho, Cho Byung-Ryul, Jeoung Dooil, Lee Hansoo, Kwon Young-Guen, Kim Young-Myeong
1 Department of Molecular and Cellular Biochemistry, Kangwon National University , Chuncheon, South Korea .
Antioxid Redox Signal. 2014 Dec 20;21(18):2469-82. doi: 10.1089/ars.2014.5856. Epub 2014 Jul 29.
Hypoxia induces expression of various genes and microRNAs (miRs) that regulate angiogenesis and vascular function. In this study, we investigated a new functional role of new hypoxia-responsive miR-101 in angiogenesis and its underlying mechanism for regulating heme oxygenase-1 (HO-1) and vascular endothelial growth factor (VEGF) expression.
We found that hypoxia induced miR-101, which binds to the 3'untranslated region of cullin 3 (Cul3) and stabilizes nuclear factor erythroid-derived 2-related factor 2 (Nrf2) via inhibition of the proteasomal degradation pathway. miR-101 overexpression promoted Nrf2 nuclear accumulation, which was accompanied with increases in HO-1 induction, VEGF expression, and endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) production. The elevated NO-induced S-nitrosylation of Kelch-like ECH-associated protein 1 and subsequent induction of Nrf2-dependent HO-1 lead to further elevation of VEGF production via a positive feedback loop between the Nrf2/HO-1 and VEGF/eNOS axes. Moreover, miR-101 promoted angiogenic signals and angiogenesis both in vitro and in vivo, and these events were attenuated by inhibiting the biological activity of HO-1, VEGF, or eNOS. Moreover, these effects were also observed in aortic rings from HO-1(+/-) and eNOS(-/-) mice. Local overexpression of miR-101 improved therapeutic angiogenesis and perfusion recovery in the ischemic mouse hindlimb, whereas antagomiR-101 diminished regional blood flow.
Hypoxia-responsive miR-101 stimulates angiogenesis by activating the HO-1/VEGF/eNOS axis via Cul3 targeting. Thus, miR-101 is a novel angiomir.
Our results provide new mechanistic insights into a functional role of miR-101 as a potential therapeutic target in angiogenesis and vascular remodeling.
缺氧诱导多种调控血管生成和血管功能的基因及微小RNA(miR)表达。在本研究中,我们探究了新的缺氧反应性miR-101在血管生成中的新功能作用及其调控血红素加氧酶-1(HO-1)和血管内皮生长因子(VEGF)表达的潜在机制。
我们发现缺氧诱导miR-101表达,其与E3泛素连接酶Cul3的3'非翻译区结合,并通过抑制蛋白酶体降解途径稳定核因子红细胞衍生2相关因子2(Nrf2)。miR-101过表达促进Nrf2核内蓄积,同时伴随HO-1诱导增加、VEGF表达增加以及内皮型一氧化氮合酶(eNOS)衍生的一氧化氮(NO)生成增加。升高的NO诱导Kelch样ECH相关蛋白1的S-亚硝基化,随后诱导Nrf2依赖的HO-1,通过Nrf2/HO-1和VEGF/eNOS轴之间的正反馈环导致VEGF生成进一步增加。此外,miR-101在体外和体内均促进血管生成信号和血管生成,而抑制HO-1、VEGF或eNOS的生物学活性可减弱这些事件。此外,在HO-1(+/-)和eNOS(-/-)小鼠的主动脉环中也观察到了这些效应。局部过表达miR-101可改善缺血小鼠后肢的治疗性血管生成和灌注恢复,而抗miR-101则减少局部血流量。
缺氧反应性miR-101通过靶向Cul3激活HO-1/VEGF/eNOS轴来刺激血管生成。因此,miR-101是一种新型血管生成miR。
我们的结果为miR-101作为血管生成和血管重塑潜在治疗靶点的功能作用提供了新的机制见解。