Department of Biological & Environmental Engineering, Cornell University , Ithaca, New York 14853, United States.
Acc Chem Res. 2014 Jun 17;47(6):1902-11. doi: 10.1021/ar5001082. Epub 2014 Jun 2.
CONSPECTUS: In recent decades, DNA has taken on an assortment of diverse roles, not only as the central genetic molecule in biological systems but also as a generic material for nanoscale engineering. DNA possesses many exceptional properties, including its biological function, biocompatibility, molecular recognition ability, and nanoscale controllability. Taking advantage of these unique attributes, a variety of DNA materials have been created with properties derived both from the biological functions and from the structural characteristics of DNA molecules. These novel DNA materials provide a natural bridge between nanotechnology and biotechnology, leading to far-ranging real-world applications. In this Account, we describe our work on the design and construction of DNA materials. Based on the role of DNA in the construction, we categorize DNA materials into two classes: substrate and linker. As a substrate, DNA interfaces with enzymes in biochemical reactions, making use of molecular biology's "enzymatic toolkit". For example, employing DNA as a substrate, we utilized enzymatic ligation to prepare the first bulk hydrogel made entirely of DNA. Using this DNA hydrogel as a structural scaffold, we created a protein-producing DNA hydrogel via linking plasmid DNA onto the hydrogel matrix through enzymatic ligation. Furthermore, to fully make use of the advantages of both DNA materials and polymerase chain reaction (PCR), we prepared thermostable branched DNA that could remain intact even under denaturing conditions, allowing for their use as modular primers for PCR. Moreover, via enzymatic polymerization, we have recently constructed a physical DNA hydrogel with unique internal structure and mechanical properties. As a linker, we have used DNA to interface with other functional moieties, including gold nanoparticles, clay minerals, proteins, and lipids, allowing for hybrid materials with unique properties for desired applications. For example, we recently designed a DNA-protein conjugate as a universal adapter for protein detection. We further demonstrate a diverse assortment of applications for these DNA materials including diagnostics, protein production, controlled drug release systems, the exploration of life evolution, and plasmonics. Although DNA has shown great potential as both substrate and linker in the construction of DNA materials, it is still in the initial stages of becoming a well-established and widely used material. Important challenges include the ease of design and fabrication, scaling-up, and minimizing cost. We envision that DNA materials will continue to bridge the gap between nanotechnology and biotechnology and will ultimately be employed for many real-world applications.
概述:近几十年来,DNA 不仅作为生物系统中的中心遗传分子,而且作为纳米级工程的通用材料,承担了多种不同的角色。DNA 具有许多独特的性质,包括其生物功能、生物相容性、分子识别能力和纳米级可控性。利用这些独特的属性,已经创造了各种具有源自 DNA 分子生物功能和结构特征的特性的 DNA 材料。这些新型 DNA 材料在纳米技术和生物技术之间架起了一座天然的桥梁,带来了广泛的实际应用。在本综述中,我们描述了我们在设计和构建 DNA 材料方面的工作。基于 DNA 在构建中的作用,我们将 DNA 材料分为两类:基质和连接物。作为基质,DNA 与生化反应中的酶相互作用,利用分子生物学的“酶工具包”。例如,我们利用 DNA 作为基质,通过酶连接制备了第一个完全由 DNA 制成的块状水凝胶。利用这种 DNA 水凝胶作为结构支架,我们通过酶连接将质粒 DNA 连接到水凝胶基质上,从而在 DNA 水凝胶上制造出一种能够产生蛋白质的 DNA 水凝胶。此外,为了充分利用 DNA 材料和聚合酶链式反应(PCR)的优势,我们制备了热稳定的分支 DNA,即使在变性条件下也能保持完整,可将其用作 PCR 的模块化引物。此外,我们最近通过酶聚合作用构建了一种具有独特内部结构和机械性能的物理 DNA 水凝胶。作为连接物,我们使用 DNA 与其他功能部分(包括金纳米粒子、粘土矿物、蛋白质和脂质)相互作用,从而制造出具有独特性质的用于特定应用的杂化材料。例如,我们最近设计了一种 DNA-蛋白质缀合物作为蛋白质检测的通用接头。我们进一步展示了这些 DNA 材料在诊断、蛋白质生产、控制药物释放系统、生命进化探索和等离子体学等方面的多种应用。尽管 DNA 作为 DNA 材料构建中的基质和连接物已经显示出巨大的潜力,但它仍处于成为一种成熟且广泛应用的材料的初期阶段。重要的挑战包括易于设计和制造、规模化和成本最小化。我们设想 DNA 材料将继续弥合纳米技术和生物技术之间的差距,并最终应用于许多实际应用。
Acc Chem Res. 2014-6-2
Acc Chem Res. 2017-2-10
Acc Chem Res. 2014-3-3
Acc Chem Res. 2014-5-20
Nat Mater. 2006-10
Acc Chem Res. 2017-3-1
Acc Chem Res. 2014-4-10
Acc Chem Res. 2014-5-14
Adv Mater. 2019-2-15
Mater Today Bio. 2025-1-21
J Nanobiotechnology. 2024-8-29