Suppr超能文献

梨(白梨)基因组。

The genome of the pear (Pyrus bretschneideri Rehd.).

机构信息

Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.

出版信息

Genome Res. 2013 Feb;23(2):396-408. doi: 10.1101/gr.144311.112. Epub 2012 Nov 13.

Abstract

The draft genome of the pear (Pyrus bretschneideri) using a combination of BAC-by-BAC and next-generation sequencing is reported. A 512.0-Mb sequence corresponding to 97.1% of the estimated genome size of this highly heterozygous species is assembled with 194× coverage. High-density genetic maps comprising 2005 SNP markers anchored 75.5% of the sequence to all 17 chromosomes. The pear genome encodes 42,812 protein-coding genes, and of these, ~28.5% encode multiple isoforms. Repetitive sequences of 271.9 Mb in length, accounting for 53.1% of the pear genome, are identified. Simulation of eudicots to the ancestor of Rosaceae has reconstructed nine ancestral chromosomes. Pear and apple diverged from each other ~5.4-21.5 million years ago, and a recent whole-genome duplication (WGD) event must have occurred 30-45 MYA prior to their divergence, but following divergence from strawberry. When compared with the apple genome sequence, size differences between the apple and pear genomes are confirmed mainly due to the presence of repetitive sequences predominantly contributed by transposable elements (TEs), while genic regions are similar in both species. Genes critical for self-incompatibility, lignified stone cells (a unique feature of pear fruit), sorbitol metabolism, and volatile compounds of fruit have also been identified. Multiple candidate SFB genes appear as tandem repeats in the S-locus region of pear; while lignin synthesis-related gene family expansion and highly expressed gene families of HCT, C3'H, and CCOMT contribute to high accumulation of both G-lignin and S-lignin. Moreover, alpha-linolenic acid metabolism is a key pathway for aroma in pear fruit.

摘要

本研究利用 BAC-by-BAC 和新一代测序相结合的方法,对梨(Pyrus bretschneideri)基因组进行了测序。组装得到的梨基因组草图大小为 512.0 Mb,序列覆盖度为 194×,对应于该高度杂合物种估计基因组大小的 97.1%。该草图包含了 42812 个编码蛋白的基因,其中约 28.5%的基因编码多个亚型。该研究还构建了包含 2005 个 SNP 标记的高密度遗传图谱,将序列锚定到了所有 17 条染色体上。这些 SNP 标记的平均物理距离为 134 kb。该研究共鉴定到长度为 271.9 Mb 的重复序列,占梨基因组的 53.1%。通过模拟二倍体真双子叶植物到蔷薇科的祖先基因组,重建了 9 条祖先染色体。梨和苹果的分化时间约为 5400 万至 2150 万年前,且在它们分化之前的 3000 万至 4500 万年前,必定发生过一次全基因组复制(WGD)事件,而该事件发生时间晚于草莓。与苹果基因组序列相比,发现苹果和梨基因组之间的大小差异主要是由于转座元件(TEs)引起的重复序列的存在,而两个物种的基因区域相似。此外,还鉴定到了与自交不亲和、木质化石细胞(梨果实的一个独特特征)、山梨醇代谢和果实挥发性化合物相关的关键基因。在梨的 S 位点区域中,多个候选 SFB 基因以串联重复的形式出现;而木质素合成相关基因家族的扩张和 HCT、C3'H 和 CCOMT 的高表达基因家族,导致了 G-木质素和 S-木质素的大量积累。此外,α-亚麻酸代谢是梨果实香气的关键途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/870a/3561880/98772de6421f/396fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验