Suppr超能文献

通过基于高通量显微镜的情境分析确定双酚A类似物的雌激素机制。

Defining estrogenic mechanisms of bisphenol A analogs through high throughput microscopy-based contextual assays.

作者信息

Stossi Fabio, Bolt Michael J, Ashcroft Felicity J, Lamerdin Jane E, Melnick Jonathan S, Powell Reid T, Dandekar Radhika D, Mancini Maureen G, Walker Cheryl L, Westwick John K, Mancini Michael A

机构信息

Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.

Odyssey Thera, San Ramon, CA 94583, USA.

出版信息

Chem Biol. 2014 Jun 19;21(6):743-53. doi: 10.1016/j.chembiol.2014.03.013. Epub 2014 May 22.

Abstract

Environmental exposures to chemically heterogeneous endocrine-disrupting chemicals (EDCs) mimic or interfere with hormone actions and negatively affect human health. Despite public interest and the prevalence of EDCs in the environment, methods to mechanistically classify these diverse chemicals in a high throughput (HT) manner have not been actively explored. Here, we describe the use of multiparametric, HT microscopy-based platforms to examine how a prototypical EDC, bisphenol A (BPA), and 18 poorly studied BPA analogs (BPXs), affect estrogen receptor (ER). We show that short exposure to BPA and most BPXs induces ERα and/or ERβ loading to DNA changing target gene transcription. Many BPXs exhibit higher affinity for ERβ and act as ERβ antagonists, while they act largely as agonists or mixed agonists and antagonists on ERα. Finally, despite binding to ERs, some BPXs exhibit lower levels of activity. Our comprehensive view of BPXs activities allows their classification and the evaluation of potential harmful effects. The strategy described here used on a large-scale basis likely offers a faster, more cost-effective way to identify safer BPA alternatives.

摘要

环境中接触化学性质各异的内分泌干扰化学物质(EDC)会模拟或干扰激素作用,并对人类健康产生负面影响。尽管公众对此感兴趣,且环境中普遍存在EDC,但尚未积极探索以高通量(HT)方式对这些多样化学物质进行机制分类的方法。在此,我们描述了使用基于多参数、HT显微镜的平台来研究典型的EDC双酚A(BPA)和18种研究较少的BPA类似物(BPX)如何影响雌激素受体(ER)。我们表明,短期接触BPA和大多数BPX会诱导ERα和/或ERβ与DNA结合,从而改变靶基因转录。许多BPX对ERβ表现出更高的亲和力,并作为ERβ拮抗剂起作用,而它们对ERα主要起激动剂或混合激动剂和拮抗剂的作用。最后,尽管一些BPX与ER结合,但其活性水平较低。我们对BPX活性的全面了解有助于对它们进行分类并评估潜在的有害影响。这里描述的策略大规模应用可能提供一种更快、更具成本效益的方法来识别更安全的BPA替代品。

相似文献

1
Defining estrogenic mechanisms of bisphenol A analogs through high throughput microscopy-based contextual assays.
Chem Biol. 2014 Jun 19;21(6):743-53. doi: 10.1016/j.chembiol.2014.03.013. Epub 2014 May 22.
3
Coexposure to phytoestrogens and bisphenol a mimics estrogenic effects in an additive manner.
Toxicol Sci. 2014 Mar;138(1):21-35. doi: 10.1093/toxsci/kft271. Epub 2013 Nov 27.
4
Bisphenol AF: Halogen bonding effect is a major driving force for the dual ERα-agonist and ERβ-antagonist activities.
Bioorg Med Chem. 2020 Feb 1;28(3):115274. doi: 10.1016/j.bmc.2019.115274. Epub 2019 Dec 18.
6
Characterizing properties of non-estrogenic substituted bisphenol analogs using high throughput microscopy and image analysis.
PLoS One. 2017 Jul 13;12(7):e0180141. doi: 10.1371/journal.pone.0180141. eCollection 2017.
7
Bisphenol-C is the strongest bifunctional ERα-agonist and ERβ-antagonist due to magnified halogen bonding.
PLoS One. 2021 Feb 9;16(2):e0246583. doi: 10.1371/journal.pone.0246583. eCollection 2021.
9
Casting a wide net for endocrine disruptors.
Chem Biol. 2014 Jun 19;21(6):705-6. doi: 10.1016/j.chembiol.2014.06.002.
10
Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches.
Toxicol Appl Pharmacol. 2013 Oct 1;272(1):67-76. doi: 10.1016/j.taap.2013.04.032. Epub 2013 May 23.

引用本文的文献

1
Characterization of flavonoids with potent and subtype-selective actions on estrogen receptors alpha and beta.
iScience. 2024 Feb 20;27(3):109275. doi: 10.1016/j.isci.2024.109275. eCollection 2024 Mar 15.
2
A novel ERβ high throughput microscopy platform for testing endocrine disrupting chemicals.
Heliyon. 2023 Dec 8;10(1):e23119. doi: 10.1016/j.heliyon.2023.e23119. eCollection 2024 Jan 15.
3
Bisphenols-A Threat to the Natural Environment.
Materials (Basel). 2023 Sep 29;16(19):6500. doi: 10.3390/ma16196500.
5
Sensitive image-based chromatin binding assays using inducible ERα to rapidly characterize estrogenic chemicals and mixtures.
iScience. 2022 Sep 23;25(10):105200. doi: 10.1016/j.isci.2022.105200. eCollection 2022 Oct 21.
6
Quality Control for Single Cell Imaging Analytics Using Endocrine Disruptor-Induced Changes in Estrogen Receptor Expression.
Environ Health Perspect. 2022 Feb;130(2):27008. doi: 10.1289/EHP9297. Epub 2022 Feb 15.
7
Endocrine disrupting chemicals differentially alter intranuclear dynamics and transcriptional activation of estrogen receptor-α.
iScience. 2021 Oct 7;24(11):103227. doi: 10.1016/j.isci.2021.103227. eCollection 2021 Nov 19.
9
Advancements in Microfluidic Systems for the Study of Female Reproductive Biology.
Endocrinology. 2021 Oct 1;162(10). doi: 10.1210/endocr/bqab078.

本文引用的文献

1
Rapid actions of xenoestrogens disrupt normal estrogenic signaling.
Steroids. 2014 Mar;81:36-42. doi: 10.1016/j.steroids.2013.11.006. Epub 2013 Nov 20.
2
Bisphenol A and human health: a review of the literature.
Reprod Toxicol. 2013 Dec;42:132-55. doi: 10.1016/j.reprotox.2013.08.008. Epub 2013 Aug 30.
3
Bisphenol a exposure disrupts genomic imprinting in the mouse.
PLoS Genet. 2013 Apr;9(4):e1003401. doi: 10.1371/journal.pgen.1003401. Epub 2013 Apr 4.
4
Bisphenol S disrupts estradiol-induced nongenomic signaling in a rat pituitary cell line: effects on cell functions.
Environ Health Perspect. 2013 Mar;121(3):352-8. doi: 10.1289/ehp.1205826. Epub 2013 Jan 17.
5
Coactivators enable glucocorticoid receptor recruitment to fine-tune estrogen receptor transcriptional responses.
Nucleic Acids Res. 2013 Apr;41(7):4036-48. doi: 10.1093/nar/gkt100. Epub 2013 Feb 26.
6
Using in vitro high throughput screening assays to identify potential endocrine-disrupting chemicals.
Environ Health Perspect. 2013 Jan;121(1):7-14. doi: 10.1289/ehp.1205065. Epub 2012 Sep 28.
7
Endocrine-disrupting chemicals: associated disorders and mechanisms of action.
J Environ Public Health. 2012;2012:713696. doi: 10.1155/2012/713696. Epub 2012 Sep 6.
8
Endocrine-disrupting chemicals and public health protection: a statement of principles from The Endocrine Society.
Endocrinology. 2012 Sep;153(9):4097-110. doi: 10.1210/en.2012-1422. Epub 2012 Jun 25.
9
The intersection of neurotoxicology and endocrine disruption.
Neurotoxicology. 2012 Dec;33(6):1410-1419. doi: 10.1016/j.neuro.2012.05.014. Epub 2012 May 31.
10
Susceptibility of estrogen receptor rapid responses to xenoestrogens: Physiological outcomes.
Steroids. 2012 Aug;77(10):910-7. doi: 10.1016/j.steroids.2012.02.019. Epub 2012 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验