Suppr超能文献

基于知识的深度神经网络方法从公共高通量筛选数据中揭示不良结局途径,以评估新型毒物。

Revealing Adverse Outcome Pathways from Public High-Throughput Screening Data to Evaluate New Toxicants by a Knowledge-Based Deep Neural Network Approach.

机构信息

Center for Computational and Integrative Biology, Rutgers University Camden, Camden, New Jersey 08103, United States.

Department of Chemistry, Rutgers University Camden, Camden, New Jersey 08102, United States.

出版信息

Environ Sci Technol. 2021 Aug 3;55(15):10875-10887. doi: 10.1021/acs.est.1c02656. Epub 2021 Jul 25.

Abstract

Traditional experimental testing to identify endocrine disruptors that enhance estrogenic signaling relies on expensive and labor-intensive experiments. We sought to design a knowledge-based deep neural network (k-DNN) approach to reveal and organize public high-throughput screening data for compounds with nuclear estrogen receptor α and β (ERα and ERβ) binding potentials. The target activity was rodent uterotrophic bioactivity driven by ERα/ERβ activations. After training, the resultant network successfully inferred critical relationships among ERα/ERβ target bioassays, shown as weights of 6521 edges between 1071 neurons. The resultant network uses an adverse outcome pathway (AOP) framework to mimic the signaling pathway initiated by ERα and identify compounds that mimic endogenous estrogens (i.e., estrogen mimetics). The k-DNN can predict estrogen mimetics by activating neurons representing several events in the ERα/ERβ signaling pathway. Therefore, this virtual pathway model, starting from a compound's chemistry initiating ERα activation and ending with rodent uterotrophic bioactivity, can efficiently and accurately prioritize new estrogen mimetics (AUC = 0.864-0.927). This k-DNN method is a potential universal computational toxicology strategy to utilize public high-throughput screening data to characterize hazards and prioritize potentially toxic compounds.

摘要

传统的实验测试方法,用于识别增强雌激素信号的内分泌干扰物,依赖于昂贵且费时的实验。我们试图设计一种基于知识的深度神经网络(k-DNN)方法,以揭示和组织具有核雌激素受体α和β(ERα和 ERβ)结合潜力的化合物的公共高通量筛选数据。目标活性是由 ERα/ERβ激活驱动的啮齿动物子宫肥大型生物活性。经过训练,所得网络成功推断出 ERα/ERβ靶标生物测定之间的关键关系,表现为 1071 个神经元之间 6521 个边缘的权重。所得网络使用不良结局途径(AOP)框架来模拟由 ERα 引发的信号通路,并识别模拟内源性雌激素的化合物(即雌激素类似物)。k-DNN 可以通过激活代表 ERα/ERβ 信号通路中几个事件的神经元来预测雌激素类似物。因此,这种虚拟途径模型,从化合物引发 ERα 激活的化学起始,到啮齿动物子宫肥大型生物活性结束,可以有效地和准确地对新的雌激素类似物进行优先级排序(AUC=0.864-0.927)。这种 k-DNN 方法是一种潜在的通用计算毒理学策略,可以利用公共高通量筛选数据来描述危害并对潜在有毒化合物进行优先级排序。

相似文献

引用本文的文献

1
Visible neural networks for multi-omics integration: a critical review.用于多组学整合的可视化神经网络:批判性综述
Front Artif Intell. 2025 Jul 17;8:1595291. doi: 10.3389/frai.2025.1595291. eCollection 2025.
2
Developmental toxicity: artificial intelligence-powered assessments.发育毒性:人工智能驱动的评估
Trends Pharmacol Sci. 2025 Jun;46(6):486-502. doi: 10.1016/j.tips.2025.04.005. Epub 2025 May 15.

本文引用的文献

1
CATMoS: Collaborative Acute Toxicity Modeling Suite.CATMoS:协作急性毒性建模套件。
Environ Health Perspect. 2021 Apr;129(4):47013. doi: 10.1289/EHP8495. Epub 2021 Apr 30.
5
Going All In: A Strategic Investment in Toxicology.全力以赴:毒物学的战略投资。
Chem Res Toxicol. 2020 Apr 20;33(4):880-888. doi: 10.1021/acs.chemrestox.9b00497. Epub 2020 Mar 19.
6
CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity.CoMPARA:雄激素受体活性协作建模项目。
Environ Health Perspect. 2020 Feb;128(2):27002. doi: 10.1289/EHP5580. Epub 2020 Feb 7.
8
Big Data and Artificial Intelligence Modeling for Drug Discovery.大数据和人工智能在药物发现中的建模。
Annu Rev Pharmacol Toxicol. 2020 Jan 6;60:573-589. doi: 10.1146/annurev-pharmtox-010919-023324. Epub 2019 Sep 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验