Communication Neuroscience Laboratories, University of Nebraska, 141 Barkley Memorial Center, Lincoln, NE 68583, USA.
Communication Neuroscience Laboratories, University of Nebraska, 141 Barkley Memorial Center, Lincoln, NE 68583, USA; Department of Special Education & Communication Disorders, University of Nebraska, 272 Barkley Memorial Center, Lincoln, NE 68583, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE 68588, USA.
J Biomech. 2014 Jul 18;47(10):2257-62. doi: 10.1016/j.jbiomech.2014.04.044. Epub 2014 May 9.
TAC-Cell is a custom-built somatosensory stimulator that delivers pneumatic cutaneous tactile inputs to virtually any skin target on the body and by virtue of its non-ferrous materials is compatible with functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) brain scanners. In this study, we describe the method to measure apparent skin displacement induced by TAC-Cell stimulation of the glabrous surface of the distal phalanx of the index finger. Specifically, we studied the effect of four servo controller input voltages (0.4V-1.0 V) on resultant skin displacement among eighteen, neurotypical adult male and female participants. A fiberoptic displacement sensor, commonly used in industrial applications, was coupled to the TAC-Cell to measure the glabrous skin׳s kinematic response to different stimulus amplitudes. Skin displacement was significantly dependent on stimulus amplitudes and sex (p<0.0001). Power spectrum and kinematic analysis of skin displacement showed that the pneumatic TAC-Cell stimulus consists of a spectrally rich, high velocity signal. In related work, we have shown that this dynamic pneumocutaneous stimulus is highly effective in evoking a cortical brain response for neurodiagnostic applications and somatosensory pathway analysis in health and disease.
TAC-Cell 是一种定制的体感刺激器,可向身体上几乎任何皮肤目标提供气动触觉输入,并且由于其非铁材料与功能磁共振成像 (fMRI) 和脑磁图 (MEG) 扫描仪兼容。在这项研究中,我们描述了一种测量 TAC-Cell 刺激食指远节指腹引起的表观皮肤位移的方法。具体来说,我们研究了四个伺服控制器输入电压(0.4V-1.0V)对 18 名神经典型成年男性和女性参与者的皮肤位移的影响。我们将一种常用于工业应用的光纤位移传感器与 TAC-Cell 耦合,以测量不同刺激幅度下无毛皮肤的运动学反应。皮肤位移明显依赖于刺激幅度和性别(p<0.0001)。皮肤位移的功率谱和运动学分析表明,气动 TAC-Cell 刺激由具有丰富频谱和高速的信号组成。在相关工作中,我们已经表明,这种动态气动皮肤刺激对于神经诊断应用和健康和疾病中的体感通路分析来说是非常有效的,可引起皮质脑反应。