Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O'Higgins 3363, Casilla 40, Correo 33, Santiago, Chile.
Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O'Higgins 3363, Casilla 40, Correo 33, Santiago, Chile; Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O'Higgins 3363, Casilla 40, Correo 33, Santiago, Chile.
Mater Sci Eng C Mater Biol Appl. 2014 Jul 1;40:24-31. doi: 10.1016/j.msec.2014.03.037. Epub 2014 Mar 26.
Since infection is a major cause of death in a patient whose immune responses have been compromised (immunocompromised patient), considerable attention has been focused on developing materials for the prevention of infections. This has been directed primarily at suppressing or eliminating the host's endogenous microbial burden and decreasing the acquisition of new organisms. In this study, the antibacterial properties of two nanocomposites, polyethylene modified with silver nanoparticles (PE-AgNps) or copper nanoparticles (PE-CuNps), against Listeria monocytogenes have been investigated. In order to elucidate the antibacterial mechanism, specifically whether this mechanism corresponds to bactericidal or bacteriolytic activities, we have determined the extent of release of metal ions (Ag(+) and Cu(2+)) and, also, the morphology of the bacteria. The metal ion release from nanocomposites was followed by inductively coupled plasma spectrometry and the morphology of the bacteria was revealed through examination of ultramicrotomed sections of bacteria in a transmission electron microscope. The study of metal ion release from the nanocomposites shows that for both nanocomposites the amount of ions released varies with time, which initially displays a linear behavior until an asymptotic behavior is reached. Further, TEM images show that silver nanoparticles (AgNps) and copper nanoparticles (CuNps), which are released from the nanocomposites, can penetrate to the cell wall and the plasma membrane of bacteria. Resulting morphological changes involve separation of the cytoplasmic membrane from the cell wall, which is known to be an effect of plasmolysis. It was revealed that the antibacterial abilities of the two nanocomposites against L. monocytogenes are associated with both bactericidal and bacteriolytic effects.
由于感染是免疫功能受损(免疫功能受损患者)患者死亡的主要原因,因此人们相当关注开发用于预防感染的材料。这主要集中在抑制或消除宿主内源性微生物负担和减少新生物体的获取上。在这项研究中,研究了两种纳米复合材料,即经银纳米颗粒(PE-AgNps)或铜纳米颗粒(PE-CuNps)改性的聚乙烯(PE)对李斯特菌的抗菌性能。为了阐明抗菌机制,特别是该机制是否对应于杀菌或溶菌活性,我们确定了金属离子(Ag(+)和Cu(2+))的释放程度,以及细菌的形态。通过电感耦合等离子体质谱法跟踪纳米复合材料中金属离子的释放,通过透射电子显微镜观察细菌的超薄切片来揭示细菌的形态。对纳米复合材料中金属离子释放的研究表明,对于两种纳米复合材料,释放的离子量随时间变化,最初呈线性行为,直到达到渐近行为。此外,TEM 图像显示,从纳米复合材料中释放的银纳米颗粒(AgNps)和铜纳米颗粒(CuNps)可以穿透细菌的细胞壁和质膜。由此产生的形态变化涉及细胞质膜与细胞壁的分离,这是质壁分离的已知效应。结果表明,两种纳米复合材料对单核细胞增生李斯特菌的抗菌能力与杀菌和溶菌作用都有关。