Suppr超能文献

通过不同类型的连接反应明确鉴定微小RNA(miRNA)与靶位点的相互作用

Unambiguous identification of miRNA:target site interactions by different types of ligation reactions.

作者信息

Grosswendt Stefanie, Filipchyk Andrei, Manzano Mark, Klironomos Filippos, Schilling Marcel, Herzog Margareta, Gottwein Eva, Rajewsky Nikolaus

机构信息

Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.

Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA.

出版信息

Mol Cell. 2014 Jun 19;54(6):1042-1054. doi: 10.1016/j.molcel.2014.03.049. Epub 2014 May 22.

Abstract

To exert regulatory function, miRNAs guide Argonaute (AGO) proteins to partially complementary sites on target RNAs. Crosslinking and immunoprecipitation (CLIP) assays are state-of-the-art to map AGO binding sites, but assigning the targeting miRNA to these sites relies on bioinformatics predictions and is therefore indirect. To directly and unambiguously identify miRNA:target site interactions, we modified our CLIP methodology in C. elegans to experimentally ligate miRNAs to their target sites. Unexpectedly, ligation reactions also occurred in the absence of the exogenous ligase. Our in vivo data set and reanalysis of published mammalian AGO-CLIP data for miRNA-chimeras yielded ∼17,000 miRNA:target site interactions. Analysis of interactions and extensive experimental validation of chimera-discovered targets of viral miRNAs suggest that our strategy identifies canonical, noncanonical, and nonconserved miRNA:targets. About 80% of miRNA interactions have perfect or partial seed complementarity. In summary, analysis of miRNA:target chimeras enables the systematic, context-specific, in vivo discovery of miRNA binding.

摘要

为发挥调控功能,微小RNA(miRNA)引导AGO蛋白至靶RNA上的部分互补位点。交联免疫沉淀(CLIP)分析是绘制AGO结合位点的前沿技术,但将靶向miRNA定位到这些位点依赖于生物信息学预测,因此是间接的。为直接明确地鉴定miRNA:靶位点相互作用,我们改进了秀丽隐杆线虫中的CLIP方法,通过实验将miRNA连接到其靶位点。出乎意料的是,在外源连接酶不存在的情况下也会发生连接反应。我们的体内数据集以及对已发表的哺乳动物AGO-CLIP数据中miRNA嵌合体的重新分析产生了约17,000个miRNA:靶位点相互作用。对相互作用的分析以及对病毒miRNA嵌合体发现的靶标的广泛实验验证表明,我们的策略可识别经典、非经典和非保守的miRNA:靶标。约80%的miRNA相互作用具有完美或部分种子互补性。总之,对miRNA:靶嵌合体的分析能够在体内系统地、针对特定背景地发现miRNA结合。

相似文献

1
Unambiguous identification of miRNA:target site interactions by different types of ligation reactions.
Mol Cell. 2014 Jun 19;54(6):1042-1054. doi: 10.1016/j.molcel.2014.03.049. Epub 2014 May 22.
3
Identification of miRNA-Target RNA Interactions Using CLASH.
Methods Mol Biol. 2016;1358:229-51. doi: 10.1007/978-1-4939-3067-8_14.
4
Pairing beyond the Seed Supports MicroRNA Targeting Specificity.
Mol Cell. 2016 Oct 20;64(2):320-333. doi: 10.1016/j.molcel.2016.09.004. Epub 2016 Oct 6.
5
Identifying Argonaute binding sites in Caenorhabditis elegans using iCLIP.
Methods. 2013 Sep 15;63(2):119-25. doi: 10.1016/j.ymeth.2013.03.033. Epub 2013 Apr 10.
6
Genome-wide identification of miRNA targets by PAR-CLIP.
Methods. 2012 Oct;58(2):94-105. doi: 10.1016/j.ymeth.2012.08.006. Epub 2012 Aug 19.
7
Argonaute CLIP--a method to identify in vivo targets of miRNAs.
Methods. 2012 Oct;58(2):106-12. doi: 10.1016/j.ymeth.2012.09.006. Epub 2012 Sep 27.
8
Learning to Predict miRNA-mRNA Interactions from AGO CLIP Sequencing and CLASH Data.
PLoS Comput Biol. 2016 Jul 20;12(7):e1005026. doi: 10.1371/journal.pcbi.1005026. eCollection 2016 Jul.
9
A tale of two sequences: microRNA-target chimeric reads.
Genet Sel Evol. 2016 Apr 4;48:31. doi: 10.1186/s12711-016-0209-x.
10
HRPK-1, a conserved KH-domain protein, modulates microRNA activity during Caenorhabditis elegans development.
PLoS Genet. 2019 Oct 4;15(10):e1008067. doi: 10.1371/journal.pgen.1008067. eCollection 2019 Oct.

引用本文的文献

1
Loss of multiple micro-RNAs uncovers multi-level restructuring of gene regulation in rodents.
BMC Genomics. 2025 Sep 2;26(1):800. doi: 10.1186/s12864-025-11815-3.
3
miRBench: novel benchmark datasets for microRNA binding site prediction that mitigate against prevalent microRNA frequency class bias.
Bioinformatics. 2025 Jul 1;41(Supplement_1):i542-i551. doi: 10.1093/bioinformatics/btaf233.
4
Modulation of protein activity by small RNA base pairing internal to coding sequences.
Mol Cell. 2025 May 1;85(9):1824-1837.e7. doi: 10.1016/j.molcel.2025.03.014. Epub 2025 Apr 7.
5
mirTarCLASH: a comprehensive miRNA target database based on chimeric read-based experiments.
Database (Oxford). 2025 Apr 3;2025. doi: 10.1093/database/baaf023.
7
CRISPR-based dissection of miRNA binding sites using isogenic cell lines is hampered by pervasive noise.
bioRxiv. 2024 Sep 3:2024.09.03.611048. doi: 10.1101/2024.09.03.611048.
8
Advancing microRNA target site prediction with transformer and base-pairing patterns.
Nucleic Acids Res. 2024 Oct 28;52(19):11455-11465. doi: 10.1093/nar/gkae782.
9
Benchmarking the negatives: Effect of negative data generation on the classification of miRNA-mRNA interactions.
PLoS Comput Biol. 2024 Aug 26;20(8):e1012385. doi: 10.1371/journal.pcbi.1012385. eCollection 2024 Aug.
10
PRIMITI: A computational approach for accurate prediction of miRNA-target mRNA interaction.
Comput Struct Biotechnol J. 2024 Jun 26;23:3030-3039. doi: 10.1016/j.csbj.2024.06.030. eCollection 2024 Dec.

本文引用的文献

1
Kaposi's sarcoma-associated herpesvirus encodes a mimic of cellular miR-23.
J Virol. 2013 Nov;87(21):11821-30. doi: 10.1128/JVI.01692-13. Epub 2013 Aug 28.
2
PARma: identification of microRNA target sites in AGO-PAR-CLIP data.
Genome Biol. 2013 Jul 29;14(7):R79. doi: 10.1186/gb-2013-14-7-r79.
3
MicroRNA target site identification by integrating sequence and binding information.
Nat Methods. 2013 Jul;10(7):630-3. doi: 10.1038/nmeth.2489. Epub 2013 May 26.
4
CLIP-based prediction of mammalian microRNA binding sites.
Nucleic Acids Res. 2013 Aug;41(14):e138. doi: 10.1093/nar/gkt435. Epub 2013 May 22.
5
Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding.
Cell. 2013 Apr 25;153(3):654-65. doi: 10.1016/j.cell.2013.03.043.
6
Circular RNAs are a large class of animal RNAs with regulatory potency.
Nature. 2013 Mar 21;495(7441):333-8. doi: 10.1038/nature11928. Epub 2013 Feb 27.
7
A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets.
Nat Methods. 2013 Mar;10(3):253-5. doi: 10.1038/nmeth.2341. Epub 2013 Jan 20.
8
Virus-encoded microRNAs: an overview and a look to the future.
PLoS Pathog. 2012 Dec;8(12):e1003018. doi: 10.1371/journal.ppat.1003018. Epub 2012 Dec 20.
9
A microRNA encoded by Kaposi sarcoma-associated herpesvirus promotes B-cell expansion in vivo.
PLoS One. 2012;7(11):e49435. doi: 10.1371/journal.pone.0049435. Epub 2012 Nov 20.
10
microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein.
EMBO Rep. 2013 Jan;14(1):80-6. doi: 10.1038/embor.2012.192. Epub 2012 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验