Suppr超能文献

PRIMITI:一种准确预测miRNA与靶标mRNA相互作用的计算方法。

PRIMITI: A computational approach for accurate prediction of miRNA-target mRNA interaction.

作者信息

Uthayopas Korawich, de Sá Alex G C, Alavi Azadeh, Pires Douglas E V, Ascher David B

机构信息

The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia.

Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia.

出版信息

Comput Struct Biotechnol J. 2024 Jun 26;23:3030-3039. doi: 10.1016/j.csbj.2024.06.030. eCollection 2024 Dec.

Abstract

Current medical research has been demonstrating the roles of miRNAs in a variety of cellular mechanisms, lending credence to the association between miRNA dysregulation and multiple diseases. Understanding the mechanisms of miRNA is critical for developing effective diagnostic and therapeutic strategies. miRNA-mRNA interactions emerge as the most important mechanism to be understood despite their experimental validation constraints. Accordingly, several computational models have been developed to predict miRNA-mRNA interactions, albeit presenting limited predictive capabilities, poor characterisation of miRNA-mRNA interactions, and low usability. To address these drawbacks, we developed PRIMITI, a PRedictive model for the Identification of novel miRNA-Target mRNA Interactions. PRIMITI is a novel machine learning model that utilises CLIP-seq and expression data to characterise functional target sites in 3'-untranslated regions (3'-UTRs) and predict miRNA-target mRNA repression activity. The model was trained using a reliable negative sample selection approach and the robust extreme gradient boosting (XGBoost) model, which was coupled with newly introduced features, including sequence and genetic variation information. PRIMITI achieved an area under the receiver operating characteristic (ROC) curve (AUC) up to 0.96 for a prediction of functional miRNA-target site binding and 0.96 for a prediction of miRNA-target mRNA repression activity on cross-validation and an independent blind test. Additionally, the model outperformed state-of-the-art methods in recovering miRNA-target repressions in an unseen microarray dataset and in a collection of validated miRNA-mRNA interactions, highlighting its utility for preliminary screening. PRIMITI is available on a reliable, scalable, and user-friendly web server at https://biosig.lab.uq.edu.au/primiti.

摘要

当前的医学研究已证实微小RNA(miRNA)在多种细胞机制中发挥作用,这使得miRNA失调与多种疾病之间的关联更具可信度。了解miRNA的机制对于制定有效的诊断和治疗策略至关重要。尽管miRNA与信使核糖核酸(mRNA)相互作用存在实验验证方面的限制,但它已成为需要了解的最重要机制。因此,已经开发了几种计算模型来预测miRNA与mRNA的相互作用,尽管这些模型存在预测能力有限、对miRNA与mRNA相互作用的表征不佳以及可用性较低等问题。为了解决这些缺点,我们开发了PRIMITI,一种用于识别新型miRNA-靶标mRNA相互作用的预测模型。PRIMITI是一种新颖的机器学习模型,它利用交联免疫沉淀测序(CLIP-seq)和表达数据来表征3'非翻译区(3'-UTR)中的功能性靶位点,并预测miRNA-靶标mRNA的抑制活性。该模型使用可靠的阴性样本选择方法和强大的极端梯度提升(XGBoost)模型进行训练,该模型结合了新引入的特征,包括序列和遗传变异信息。在交叉验证和独立盲测中,PRIMITI在预测功能性miRNA-靶标位点结合方面的受试者操作特征(ROC)曲线下面积(AUC)高达0.96,在预测miRNA-靶标mRNA抑制活性方面的AUC也达到0.96。此外,在一个未见过的微阵列数据集中以及在一组经过验证的miRNA-mRNA相互作用中,该模型在恢复miRNA-靶标抑制方面优于现有最先进的方法,突出了其在初步筛选中的实用性。PRIMITI可通过可靠、可扩展且用户友好的网络服务器获取,网址为https://biosig.lab.uq.edu.au/primiti。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba19/11340604/09f6e7e4a9fc/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验