Suppr超能文献

一种新的局部二值模式变体:角菱形形状局部二值模式(CRSLBP)。

A New LBP Variant: Corner Rhombus Shape LBP (CRSLBP).

作者信息

Al Saidi Ibtissam, Rziza Mohammed, Debayle Johan

机构信息

LRIT Laboratory, Rabat IT Center, Faculty of Sciences, Mohammed V University in Rabat, Rabat B.P. 1014, Morocco.

Mines Saint-Etienne, French National Center for Scientific Research, Joint Research Unit 5307 Laboratory Georges Friedel, Centre SPIN 158 Cours Fauriel, CEDEX 2, 42023 Saint-Etienne, France.

出版信息

J Imaging. 2022 Jul 17;8(7):200. doi: 10.3390/jimaging8070200.

Abstract

The local binary model is a straightforward, dependable, and effective method for extracting relevant local information from images. However, because it only uses sign information in the local region, the local binary pattern (LBP) is ineffective at capturing discriminating characteristics. Furthermore, most LBP variants select a region with one specific center pixel to fill all neighborhoods. In this paper, a new variant of a LBP is proposed for texture classification, known as corner rhombus-shape LBP (CRSLBP). In the CRSLBP approach, we first use three methods to threshold the pixel's neighbors and center to obtain four center pixels by using sign and magnitude information with respect to a chosen region of an even block. This helps determine not just the relationship between neighbors and the pixel center but also between the center and the neighbor pixels of neighborhood center pixels. We evaluated the performance of our descriptors using four challenging texture databases: Outex (TC10,TC12), Brodatz, KTH-TIPSb2, and UMD. Various extensive experiments were performed that demonstrated the effectiveness and robustness of our descriptor in comparison with the available state of the art (SOTA).

摘要

局部二值模型是一种从图像中提取相关局部信息的直接、可靠且有效的方法。然而,由于局部二值模式(LBP)仅使用局部区域中的符号信息,因此在捕获判别特征方面效果不佳。此外,大多数LBP变体选择具有一个特定中心像素的区域来填充所有邻域。本文提出了一种用于纹理分类的LBP新变体,称为角菱形LBP(CRSLBP)。在CRSLBP方法中,我们首先使用三种方法对像素的邻居和中心进行阈值处理,通过使用关于偶数块所选区域的符号和幅度信息来获得四个中心像素。这不仅有助于确定邻居与像素中心之间的关系,还能确定邻域中心像素的中心与邻居像素之间的关系。我们使用四个具有挑战性的纹理数据库评估了我们描述符的性能:Outex(TC10、TC12)、Brodatz、KTH-TIPSb2和UMD。进行了各种广泛的实验,结果表明与现有技术水平(SOTA)相比,我们的描述符具有有效性和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb65/9324107/1f579b805e35/jimaging-08-00200-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验