Suppr超能文献

果蝇多药耐药相关蛋白(ABCC1)的靶器官特异性活性可减轻甲基汞的发育毒性。

Target organ specific activity of drosophila MRP (ABCC1) moderates developmental toxicity of methylmercury.

作者信息

Prince Lisa, Korbas Malgorzata, Davidson Philip, Broberg Karin, Rand Matthew Dearborn

机构信息

Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box EHSC, Rochester, New York 14642.

Canadian Light Source Inc. 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.

出版信息

Toxicol Sci. 2014 Aug 1;140(2):425-35. doi: 10.1093/toxsci/kfu095. Epub 2014 May 25.

Abstract

Methylmercury (MeHg) is a ubiquitous and persistent neurotoxin that poses a risk to human health. Although the mechanisms of MeHg toxicity are not fully understood, factors that contribute to susceptibility are even less well known. Studies of human gene polymorphisms have identified a potential role for the multidrug resistance-like protein (MRP/ABCC) family, ATP-dependent transporters, in MeHg susceptibility. MRP transporters have been shown to be important for MeHg excretion in adult mouse models, but their role in moderating MeHg toxicity during development has not been explored. We therefore investigated effects of manipulating expression levels of MRP using a Drosophila development assay. Drosophila MRP (dMRP) is homologous to human MRP1-4 (ABCC1-4), sharing 50% identity and 67% similarity with MRP1. A greater susceptibility to MeHg is seen in dMRP mutant flies, demonstrated by reduced rates of eclosion on MeHg-containing food. Furthermore, targeted knockdown of dMRP expression using GAL4>UAS RNAi methods demonstrates a tissue-specific function for dMRP in gut, Malpighian tubules, and the nervous system in moderating developmental susceptibility to MeHg. Using X-ray synchrotron fluorescence imaging, these same tissues were also identified as the highest Hg-accumulating tissues in fly larvae. Moreover, higher levels of Hg are seen in dMRP mutant larvae compared with a control strain fed an equivalent dose of MeHg. In sum, these data demonstrate that dMRP expression, both globally and within Hg-targeted organs, has a profound effect on susceptibility to MeHg in developing flies. Our findings point to a potentially novel and specific role for dMRP in neurons in the protection against MeHg. Finally, this experimental system provides a tractable model to evaluate human polymorphic variants of MRP and other gene variants relevant to genetic studies of mercury-exposed populations.

摘要

甲基汞(MeHg)是一种普遍存在且持久的神经毒素,对人类健康构成风险。尽管甲基汞毒性的机制尚未完全了解,但导致易感性的因素更是鲜为人知。对人类基因多态性的研究已经确定了多药耐药样蛋白(MRP/ABCC)家族(一种ATP依赖性转运蛋白)在甲基汞易感性中的潜在作用。在成年小鼠模型中,MRP转运蛋白已被证明对甲基汞的排泄很重要,但它们在发育过程中调节甲基汞毒性的作用尚未得到探索。因此,我们使用果蝇发育试验研究了操纵MRP表达水平的影响。果蝇MRP(dMRP)与人类MRP1-4(ABCC1-4)同源,与MRP1的同一性为50%,相似性为67%。在dMRP突变果蝇中观察到对甲基汞的易感性更高,这通过在含甲基汞的食物上羽化率降低得到证明。此外,使用GAL4>UAS RNAi方法靶向敲低dMRP表达,证明了dMRP在肠道、马氏管和神经系统中调节对甲基汞发育易感性的组织特异性功能。使用X射线同步荧光成像,这些相同的组织也被确定为果蝇幼虫中汞积累最高的组织。此外,与喂食等量甲基汞的对照菌株相比,dMRP突变幼虫中的汞含量更高。总之,这些数据表明,dMRP的表达,无论是整体还是在汞靶向器官内,对发育中的果蝇对甲基汞的易感性都有深远影响。我们的研究结果表明dMRP在神经元中对甲基汞的保护作用可能具有新的特定作用。最后,这个实验系统提供了一个易于处理的模型,以评估MRP的人类多态性变体和其他与汞暴露人群遗传研究相关的基因变体。

相似文献

1
Target organ specific activity of drosophila MRP (ABCC1) moderates developmental toxicity of methylmercury.
Toxicol Sci. 2014 Aug 1;140(2):425-35. doi: 10.1093/toxsci/kfu095. Epub 2014 May 25.
6
Latent effects of early-life methylmercury exposure on motor function in Drosophila.
Neurotoxicol Teratol. 2021 Nov-Dec;88:107037. doi: 10.1016/j.ntt.2021.107037. Epub 2021 Oct 14.
7
Methylmercury myotoxicity targets formation of the myotendinous junction.
Toxicology. 2020 Oct;443:152561. doi: 10.1016/j.tox.2020.152561. Epub 2020 Aug 13.
9
Tissue-specific Nrf2 signaling protects against methylmercury toxicity in Drosophila neuromuscular development.
Arch Toxicol. 2020 Dec;94(12):4007-4022. doi: 10.1007/s00204-020-02879-z. Epub 2020 Aug 20.

引用本文的文献

4
Glutathione-coordinated metal complexes as substrates for cellular transporters.
Metallomics. 2021 Apr 30;13(5). doi: 10.1093/mtomcs/mfab015.
5
Methylmercury myotoxicity targets formation of the myotendinous junction.
Toxicology. 2020 Oct;443:152561. doi: 10.1016/j.tox.2020.152561. Epub 2020 Aug 13.
6
Drosophotoxicology: Elucidating Kinetic and Dynamic Pathways of Methylmercury Toxicity in a Drosophila Model.
Front Genet. 2019 Aug 9;10:666. doi: 10.3389/fgene.2019.00666. eCollection 2019.
7
Guarana improves behavior and inflammatory alterations triggered by methylmercury exposure: an in vivo fruit fly and in vitro neural cells study.
Environ Sci Pollut Res Int. 2019 May;26(15):15069-15083. doi: 10.1007/s11356-019-04881-0. Epub 2019 Mar 27.
8
In vitro transport of methotrexate by Drosophila Multidrug Resistance-associated Protein.
PLoS One. 2018 Oct 12;13(10):e0205657. doi: 10.1371/journal.pone.0205657. eCollection 2018.
9
Notch Target Gene E(spl)mδ Is a Mediator of Methylmercury-Induced Myotoxicity in .
Front Genet. 2018 Jan 15;8:233. doi: 10.3389/fgene.2017.00233. eCollection 2017.
10
Zinc Detoxification: A Functional Genomics and Transcriptomics Analysis in Cultured Cells.
G3 (Bethesda). 2018 Feb 2;8(2):631-641. doi: 10.1534/g3.117.300447.

本文引用的文献

1
Genetic susceptibility to methylmercury developmental neurotoxicity matters.
Front Genet. 2013 Dec 13;4:278. doi: 10.3389/fgene.2013.00278. eCollection 2013.
3
Targeting multidrug resistance protein 1 (MRP1, ABCC1): past, present, and future.
Annu Rev Pharmacol Toxicol. 2014;54:95-117. doi: 10.1146/annurev-pharmtox-011613-135959. Epub 2013 Sep 18.
4
Glutathione status and the renal elimination of inorganic mercury in the Mrp2(-/-) mouse.
PLoS One. 2013 Sep 5;8(9):e73559. doi: 10.1371/journal.pone.0073559. eCollection 2013.
5
Placental and fetal disposition of mercuric ions in rats exposed to methylmercury: role of Mrp2.
Reprod Toxicol. 2012 Dec;34(4):628-34. doi: 10.1016/j.reprotox.2012.10.001. Epub 2012 Oct 8.
7
Drosophila CYP6g1 and its human homolog CYP3A4 confer tolerance to methylmercury during development.
Toxicology. 2012 Oct 9;300(1-2):75-82. doi: 10.1016/j.tox.2012.06.001. Epub 2012 Jun 12.
10
Glutathione-dependent interaction of heavy metal compounds with multidrug resistance proteins MRP1 and MRP2.
Environ Toxicol Pharmacol. 2008 Jul;26(1):102-8. doi: 10.1016/j.etap.2008.02.006. Epub 2008 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验